Magnetically ordered, electrically insulating materials pave the way towards novel spintronic devices. In these materials the flow of magnetic excitations such as magnons results in pure spin currents. These spin currents can be driven by gradients of the spin chemical potential and/or temperature such that they can play the same role in novel spintronic devices as charge currents in traditional electronic circuits. Connecting spin current based and charge current based devices requires spin to charge interconversion. This has been achieved by the spin Hall effect with an efficiency of several 10%. The recent progress in materials development and understanding of pure spin current physics opens up a plethora of novel device concepts and opportunities for fundamental studies.
Detection and manipulation of electrons spins are key prerequisites for spin-based electronics or spintronics. This is usually achieved by contacting ferromagnets with metals or semiconductors, in which the relaxation of spins due to spin-orbit coupling limits both the efficiency and the length scale. In topological insulator materials, on the contrary, the spin-orbit coupling is so strong that the spin direction uniquely determines the current direction, which allows us to conceive a whole new scheme for spin detection and manipulation. Nevertheless, even the most basic process, the spin injection into a topological insulator from a ferromagnet, has not yet been demonstrated. Here we report successful spin injection into the surface states of topological insulators by using a spin pumping technique. By measuring the voltage that shows up across the samples as a result of spin pumping, we demonstrate that a spin-electricity conversion effect takes place in the surface states of bulk-insulating topological insulators Bi1.5Sb0.5Te1.7Se1.3 and Sn-doped Bi2Te2Se. In this process, due to the two-dimensional nature of the surface state, there is no spin current along the perpendicular direction. Hence, the mechanism of this phenomenon is different from the inverse spin Hall effect and even predicts perfect conversion between spin and electricity at room temperature. The present results reveal a great advantage of topological insulators as inborn spintronics devices.
An exponential increase in the performance of silicon microelectronics and the demand to manufacture in great volumes has created an ecosystem that requires increasingly complex tools to fabricate and characterize the next generation of chips. However, the cost to develop and produce the next generation of these tools has also risen exponentially, to the point where the risk associated with progressing to smaller feature sizes has created pain points throughout the ecosystem. The present challenge includes shrinking the smallest features from nanometers to atoms (10 nm corresponds to 30 silicon atoms). Relaxing the requirement for achieving scalable manufacturing creates the opportunity to evaluate ideas not one or two generations into the future, but at the absolute physical limit of atoms themselves. This article describes recent advances in atomic precision advanced manufacturing (APAM) that open the possibility of exploring opportunities in digital electronics. Doing so will require advancing the complexity of APAM devices and integrating APAM with CMOS.
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users, since it can be operated in existing commercial FEBID systems without making any modification. The presented method allows to engineer hybrid nanomechanical resonators with precisely tailored functionality. It also appears as a new tool for studying growth dynamics of ultra-thin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.
Recent years witnessed much broader use of Brillouin inelastic light scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures, and devices. Driven by developments in instrumentation and the strong need for accurate knowledge of energies of elemental excitations, the Brillouin - Mandelstam spectroscopy is rapidly becoming an essential technique, complementary to the Raman inelastic light scattering spectroscopy. We provide an overview of recent progress in the Brillouin light scattering technique, focusing on the use of this photonic method for the investigation of confined acoustic phonons, phononic metamaterials, magnon propagation and scattering. The Review emphasizes emerging applications of the Brillouin - Mandelstam spectroscopy for phonon engineered structures and spintronic devices and concludes with a perspective for future directions.
Angular momentum transport is one of the cornerstones of spintronics. Spin angular momentum is not only transported by mobile charge carriers, but also by the quantized excitations of the magnetic lattice in magnetically ordered systems. In this regard, magnetically ordered insulators provide a platform for magnon spin transport experiments without additional contributions from spin currents carried by mobile electrons. In combination with charge-to-spin current conversion processes in conductors with finite spin-orbit coupling it is possible to realize all-electrical magnon transport schemes in thin film heterostructures. This review provides an insight into such experiments and recent breakthroughs achieved. Special attention is given to charge current based manipulation via an adjacent normal metal of magnon transport in magnetically ordered insulators in terms of spin-transfer torque. Moreover, the influence of two magnon modes with opposite spin in antiferromagnetic insulators on all-electrical magnon transport experiments is discussed.