Do you want to publish a course? Click here

Atomic Precision Advanced Manufacturing for Digital Electronics

130   0   0.0 ( 0 )
 Added by Evan M Anderson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An exponential increase in the performance of silicon microelectronics and the demand to manufacture in great volumes has created an ecosystem that requires increasingly complex tools to fabricate and characterize the next generation of chips. However, the cost to develop and produce the next generation of these tools has also risen exponentially, to the point where the risk associated with progressing to smaller feature sizes has created pain points throughout the ecosystem. The present challenge includes shrinking the smallest features from nanometers to atoms (10 nm corresponds to 30 silicon atoms). Relaxing the requirement for achieving scalable manufacturing creates the opportunity to evaluate ideas not one or two generations into the future, but at the absolute physical limit of atoms themselves. This article describes recent advances in atomic precision advanced manufacturing (APAM) that open the possibility of exploring opportunities in digital electronics. Doing so will require advancing the complexity of APAM devices and integrating APAM with CMOS.



rate research

Read More

The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered processors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS$_2$ transistors. Using Raman thermometry we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance (TBC) of the MoS$_2$ interface (14 $pm$ 4 MWm$^-$$^2$K$^-$$^1$) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into non-uniformities of the MoS$_2$ transistors (small bilayer regions), which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 $mu$m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF$_6$. We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 $mu$m over $approx ,$200x200 $mu$m$^2$). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF$_6$-based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.
Proton radiation damage is an important failure mechanism for electronic devices in near-Earth orbits, deep space and high energy physics facilities. Protons can cause ionizing damage and atomic displacements, resulting in device degradation and malfunction. Shielding of electronics increases the weight and cost of the systems but does not eliminate destructive single events produced by energetic protons. Modern electronics based on semiconductors - even those specially designed for radiation hardness - remain highly susceptible to proton damage. Here we demonstrate that room temperature (RT) charge-density-wave (CDW) devices with quasi-two-dimensional (2D) 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 10^14 H+cm^2. Current-voltage I-V characteristics of these 2D CDW devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other 2D devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these all-metallic CDW devices can be attributed to their two-terminal design, quasi-2D nature of the active channel, and high concentration of charge carriers in the utilized CDW phases. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
Accurate extraction of liquid is the first step towards low-volume liquid delivery and nanocharacterization, which plays a significant role in biomedical research. In this study, a tip-shaped graphene nanopipette (GNP) is proposed by encapsulating the biomolecule solution on the prefabricated metal tip with graphene. The volume of the encapsulated liquid is highly controllable at zeptoliter precision by tuning the encapsulating speed and the number of graphene encapsulation rounds. Using protein (ferritin) solution as an example, it has been confirmed by finite element analysis and the controlled experiments that the GNP allows the delivery of ferritin solution at the zeptoliter-scale. Furthermore, GNP is demonstrated as a new type of tip-shaped liquid cell, which is suitable for multiple nanocharacterization techniques. In particular, due to the ultra-sharp tip shape, isotope (13C)-labelled glucose solution encapsulated in GNP has been characterized by atom probe tomography (APT) in the laser-pulsed mode. Analysis of the mass spectrum and the reconstructed three-dimensional chemical maps reveals the quantitative distribution and the compositions of individual glucose molecules. The GNP is expected to be introduced to deliver liquid in the range of zeptoliters to attoliters, and brings a new capability for characterization of biological specimens in their near-native state.
60 - Priyamvada Jadaun , Can Cui , 2020
Artificial Intelligence (AI) promises to fundamentally transform society but faces multiple challenges in doing so. In particular, state-of-the-art neuromorphic devices used to implement AI typically lack processes like neuromodulation and neural oscillations that are critical for enabling many advanced cognitive abilities shown by the brain. Here, we utilize smart materials, that adapt their structure and properties in response to external stimuli, to emulate the modulatory behaviour of neurons called neuromodulation. Leveraging these materials, we have designed and simulated the dynamics of a self-adaptive artificial neuron, which comprises five magnetic skyrmions hosted in a bilayer of thulium iron garnet (TmIG) and platinum (Pt). Micromagnetic simulations show that both the amplitudes and frequencies of neuronal dynamics can be modified by reconfiguring the skyrmion lattice, thereby actualizing neuromodulation. Further, we demonstrate that this neuron achieves a significant advancement over state-of-the-art by realizing the advanced cognitive abilities of context-awareness, cross-frequency coupling as well as information fusion, while utilizing ultra-low power and being ultra-compact. Building advanced cognition into AI can fundamentally transform a wide array of fields including personalized medicine, neuro-prosthesis, human-machine interaction and help realize the next-generation of context-aware AI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا