Do you want to publish a course? Click here

Influence of disorder on the signature of pseudogap and multigap superconducting behavior in FeSe

68   0   0.0 ( 0 )
 Added by Sahana Rossler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated several FeSe single crystals grown by two different methods by utilizing experimental techniques namely, resistivity, magnetoresistance, specific heat, scanning tunneling microscopy, and spectroscopy. The residual resistivity ratio (RRR) shows systematic differences between samples grown by chemical vapor transport and flux vapor transport, indicating variance in the amount of scattering centers. Although the superconducting transition temperature $T_c$ is not directly related to RRR, our study evidences subtle differences in the features of an incipient ordering mode related to a depletion of density of states at the Fermi level. For instance, the onset temperature of anisotropic spin-fluctuations at $T^* approx 75$ K, and the temperature of the opening-up of a partial gap in the density of states at $T^{**} approx 30$ K are not discernible in the samples with lower RRR. Further, we show that the functional dependence of the electronic specific heat below 2 K, which allows to determine the nodal features as well as the small superconducting gap, differs significantly in crystals grown by these two different methods. Our investigation suggests that some of the controversies about the driving mechanism for the superconducting gap or its structure and symmetry is related to minute differences in the crystals arising due to the growth techniques used and the total amount of scattering centers present in the sample.

rate research

Read More

In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined textit{in situ} electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements to reveal an unprecedentedly large pseudogap regime in single-layer FeSe/SrTiO$_3$, an interfacial superconductor where incoherent Cooper pairs are initially formed above $T_{Delta}$ $approx$ 60 K, but where a zero resistance state is only achieved below $T_{0}$ $<$ 30 K. We show that this behavior is accompanied by distinct transport signatures of two-dimensional phase fluctuating superconductivity, suggesting a mixed vortex state hosting incoherent Cooper pairs which persist well above the maximum clean limit $T_{c}$ of $approx$ 40 K. Our work establishes the critical role of reduced dimensionality in driving the complex interplay between Cooper pairing and phase coherence in two-dimensional high-$T_c$ superconductors, providing a paradigm for understanding and engineering higher-$T_{c}$ interfacial superconductors.
73 - A. Adamski , C. Krellner , 2017
We investigate the temperature dependence of the lower critical field $H_{c1}(T)$, the field at which vortices penetrate into the sample, of a high-quality fluorine-doped NdFeAsO single crystal under static magnetic fields $H$ parallel to the $c$-axis. The temperature dependence of the first vortex penetration field has been experimentally obtained and pronounced changes of the $H_{c1}$(T) curvature are observed, which is attributed to the multiband superconductivity. Using a two-band model with $s$-wave-like gaps, the temperature-dependence of the lower critical field $H_{c1}(T)$ can be well described. These observations clearly show that the superconducting energy gap in fluorine-doped NdFeAsO is nodeless. The values of the penetration depth at $T$ = 0,K have been determined and confirm that the pnictide superconductors obey an Uemura-style relationship between $T_{c}$ and $lambda_{ab}(0)^{-2}$
101 - Nan Zhou , Yue Sun , C. Y. Xi 2021
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.
We conducted $^{77}$Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature $(T_1T)^{-1}$ increases below the structural transition temperature $T_mathrm{s}$ but starts to be suppressed below $T^*$, well above the superconducting transition temperature $T_mathrm{c}(H)$, resulting in a broad maximum of $(T_1T)^{-1}$ at $T_mathrm{p}(H)$. This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because $T^*$ and $T_mathrm{p}(H)$ decrease in the same manner as $T_mathrm{c}(H)$ with increasing $H$, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above $T_mathrm{c}(H)$.
The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the emergence of a pseudogap. This new energy scale introduces asymmetry in the quasiparticle density of states because it is associated with the antiferromagnetic Brillouin zone. By contrast, superconductivity develops on the Fermi surface and this largely restores the particle-hole symmetry for energies below the superconducting energy gap scale. In the highly underdoped regime, these two scales can be separately identified in the density of states and also partial density of states for each fixed angle in the Brillouin zone. From the total density of states, we find that the pseudogap energy scale manifests itself differently as a function of doping for positive and negative bias. Furthermore, we find evidence from recent scanning tunneling spectroscopy data for asymmetry in the positive and negative bias of the extracted $Delta(theta)$ which is in qualitative agreement with this model. Likewise, the slope of the linear low energy density of states is nearly constant in the underdoped regime while it increases significantly with overdoping in agreement with the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا