Do you want to publish a course? Click here

The Herschel-ATLAS Data Release 2 Paper II: Catalogues of far-infrared and submillimetre sources in the fields at the south and north Galactic Poles

70   0   0.0 ( 0 )
 Added by Steve Maddox
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The {it Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg$^2$ with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350 and 500mic. This is the second of three papers describing the data release for the large fields at the south and north Galactic poles (NGP and SGP). In this paper we describe the catalogues of far-infrared and submillimetre sources for the NGP and SGP, which cover 177 deg$^2$ and 303 deg$^2$, respectively. The catalogues contain 153,367 sources for the NGP field and 193,527 sources for the SGP field detected at more than 4$sigma$ significance in any of the 250, 350 or 500mic bands. The source detection is based on the 250mic map, and we present photometry in all five bands for each source, including aperture photometry for sources known to be extended. The rms positional accuracy for the faintest sources is about 2.4 arc seconds in both right ascension and declination. We present a statistical analysis of the catalogues and discuss the practical issues -- completeness, reliability, flux boosting, accuracy of positions, accuracy of flux measurements -- necessary to use the catalogues for astronomical projects.



rate research

Read More

We present the largest submillimeter images that have been made of the extragalactic sky. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg$^2$ with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350, and 500{mu}m. In this paper we present the images from our two largest fields which account for ~75% of the survey. The first field is 180.1 deg$^2$ in size centered on the North Galactic Pole (NGP) and the second field is 317.6 deg$^2$ in size centered on the South Galactic Pole. The NGP field serendipitously contains the Coma cluster. Over most (~80%) of the images, the pixel noise, including both instrumental noise and confusion noise, is approximately 3.6, and 3.5 mJy/pix at 100 and 160{mu}m, and 11.0, 11.1 and 12.3 mJy/beam at 250, 350 and 500{mu}m, respectively, but reaches lower values in some parts of the images. If a matched filter is applied to optimize point-source detection, our total 1{sigma} map sensitivity is 5.7, 6.0, and 7.3 mJy at 250, 350, and 500{mu}m, respectively. We describe the results of an investigation of the noise properties of the images. We make the most precise estimate of confusion in SPIRE maps to date finding values of 3.12+/-0.07, 4.13+/-0.02 and 4.45+/-0.04 mJy/beam at 250, 350, and 500{mu}m in our un-convolved maps. For PACS we find an estimate of the confusion noise in our fast-parallel observations of 4.23 and 4.62 mJy/beam at 100 and 160{mu}m. Finally, we give recipes for using these images to carry out photometry, both for unresolved and extended sources.
This paper is the second in a pair of articles presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500$mu$m covering a total area of 600deg$^2$. In this paper we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg$^2$ over three equatorial fields of roughly 12$^circ$x4.5$^circ$ centred at 9$^h$, 12$^h$ and 14.5$^h$ respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood-ratio technique to identify SDSS counterparts at r<22.4 for 250-$mu$m-selected sources detected at $geq$ 4$sigma$ ($approx$28mJy). We find `reliable counterparts (reliability R$geq$0.8) for 44,835 sources (39 per cent), with an estimated completeness of 73.0 per cent and contamination rate of 4.7 per cent. Using redshifts and multi-wavelength photometry from GAMA and other public catalogues, we show that H-ATLAS-selected galaxies at $z<0.5$ span a wide range of optical colours, total infrared (IR) luminosities, and IR/UV ratios, with no strong disposition towards mid-IR-classified AGN in comparison with optical selection. The data described herein, together with all maps and catalogues described in the companion paper (Valiante et al. 2016), are available from the H-ATLAS website at www.h-atlas.org.
We present the first major data release of the largest single key-project in area carried out in open time with the Herschel Space Observatory. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 600 deg^2 in five photometric bands - 100, 160, 250, 350 and 500 um - with the PACS and SPIRE cameras. In this paper and a companion paper (Bourne et al. 2016) we present the survey of three fields on the celestial equator, covering a total area of 161.6 deg^2 and previously observed in the Galaxy and Mass Assembly (GAMA) spectroscopic survey. This paper describes the Herschel images and catalogues of the sources detected on the SPIRE 250 um images. The 1-sigma noise for source detection, including both confusion and instrumental noise, is 7.4, 9.4 and 10.2 mJy at 250, 350 and 500 um. Our catalogue includes 120230 sources in total, with 113995, 46209 and 11011 sources detected at >4-sigma at 250, 350 and 500 um. The catalogue contains detections at >3-sigma at 100 and 160 um for 4650 and 5685 sources, and the typical noise at these wavelengths is 44 and 49 mJy. We include estimates of the completeness of the survey and of the effects of flux bias and also describe a novel method for determining the true source counts. The H-ATLAS source counts are very similar to the source counts from the deeper HerMES survey at 250 and 350 um, with a small difference at 500 um. Appendix A provides a quick start in using the released datasets, including instructions and cautions on how to use them.
We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.
147 - B. Magnelli , D. Lutz , P. Santini 2012
We study a sample of 61 submillimetre galaxies (SMGs) selected from ground-based surveys, with known spectroscopic redshifts and observed with Herschel as part of the PACS Evolutionary Probe (PEP) and the Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. We use the broad far-infrared wavelength coverage (100-600um) provided by the combination of PACS and SPIRE observations. Using a power-law temperature distribution model to derive infrared luminosities and dust temperatures, we measure a dust emissivity spectral index for SMGs of beta=2.0+/-0.2. Our results unveil the diversity of the SMG population. Some SMGs exhibit extreme infrared luminosities of ~10^13 Lsun and relatively warm dust components, while others are fainter (~10^12 Lsun) and are biased towards cold dust temperatures. The extreme infrared luminosities of some SMGs (LIR>10^12.7 Lsun, 26/61 systems) imply SFRs of >500Msun yr^-1. Such high SFRs are difficult to reconcile with a secular mode of star formation, and may instead correspond to a merger-driven stage in the evolution of these galaxies. Another observational argument in favour of this scenario is the presence of dust temperatures warmer than that of SMGs of lower luminosities (~40K as opposed to ~25K), consistent with observations of local ULIRGs triggered by major mergers and with results from hydrodynamic simulations of major mergers combined with radiative transfer calculations. Luminous SMGs are also offset from normal star-forming galaxies in the stellar mass-SFR plane, suggesting that they are undergoing starburst events with short duty cycles, compatible with the major merger scenario. On the other hand, a significant fraction of the low infrared luminosity SMGs have cold dust temperatures, are located close to the main sequence of star formation, and thus might be evolving through a secular mode of star formation. [abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا