Do you want to publish a course? Click here

ATCA observations of the MACS-Planck Radio Halo Cluster Project II. Radio observations of an intermediate redshift cluster sample

71   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ($sim$ 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. We detect a giant radio halo in PSZ2 G284.97-23.69 (z=0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z=0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio halos with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters.



rate research

Read More

We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-23.7 (z=0.39, M_500 = 8.39 x 10^(14) M_Sun). Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise level of ~11 microJy/beam on the wide-band (1.1-3.1 GHz), full-resolution (~5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published. We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio sources. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied 1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology. While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift radio-loud clusters in the same mass range, it shows a similar correlation with the cluster virial radius, as expected in the framework of hierarchical structure formation.
We present deep 1.1-3.1 GHz Australia Telescope Compact Array observations of the radio halo of the bullet cluster, 1E 0657-55.8. In comparison to existing images of this radio halo the detection in our images is at higher significance. The radio halo is as extended as the X-ray emission in the direction of cluster merger but is significantly less extended than the X-ray emission in the perpendicular direction. At low significance we detect a faint second peak in the radio halo close to the X-ray centroid of the smaller sub-cluster (the bullet) suggesting that, similarly to the X-ray emission, the radio halo may consist of two components. Finally, we find that the distinctive shape of the western edge of the radio halo traces out the X-ray detected bow shock. The radio halo morphology and the lack of strong point-to-point correlations between radio, X-ray and weak-lensing properties suggests that the radio halo is still being formed. The colocation of the X-ray shock with a distinctive radio brightness edge illustrates that the shock is influencing the structure of the radio halo. These observations support the theory that shocks and turbulence influence the formation and evolution of radio halo synchrotron emission.
Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known $sim2.1$ Mpc radio halo and $sim1.5$ Mpc radio relic. We carry out a radio spectral analysis from which we determine the relics injection spectral index to be $alpha_{rm{inj}} = -1.12 pm 0.19$. This corresponds to a shock Mach number of $mathcal{M}$ = 2.05$^{+0.31}_{-0.19}$ under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halos spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure $-1.81 pm 0.26$ and $-0.63 pm 0.21$ for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of $R=1.39^{+0.34}_{-0.22}$ co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of $mathcal{M}=1.26^{+0.25}_{-0.15}$.
85 - F. Loi , M. Murgia , F. Govoni 2017
We observed the galaxy cluster CIZA J2242.8+5301 with the Sardinia Radio Telescope to provide new constraints on its spectral properties at high frequency. We conducted observations in three frequency bands centred at 1.4 GHz, 6.6 GHz and 19 GHz, resulting in beam resolutions of 14$^{prime}$, 2.9$^{prime}$ and 1$^{prime}$ respectively. These single-dish data were also combined with archival interferometric observations at 1.4 and 1.7 GHz. From the combined images, we measured a flux density of ${rm S_{1.4GHz}=(158.3pm9.6),mJy}$ for the central radio halo and ${rm S_{1.4GHz}=(126pm8),mJy}$ and ${rm S_{1.4GHz}=(11.7pm0.7),mJy}$ for the northern and the southern relic respectively. After the spectral modelling of the discrete sources, we measured at 6.6 GHz ${rm S_{6.6GHz}=(17.1pm1.2),mJy}$ and ${rm S_{6.6GHz}=(0.6pm0.3),mJy}$ for the northern and southern relic respectively. Assuming simple diffusive shock acceleration, we interpret measurements of the northern relic with a continuous injection model represented by a broken power-law. This yields an injection spectral index ${rm alpha_{inj}=0.7pm0.1}$ and a Mach number ${rm M=3.3pm0.9}$, consistent with recent X-ray estimates. Unlike other studies of the same object, no significant steepening of the relic radio emission is seen in data up to 8.35 GHz. By fitting the southern relic spectrum with a simple power-law (${rm S_{ u}propto u^{-alpha}}$) we obtained a spectral index ${rm alphaapprox1.9}$ corresponding to a Mach number (${rm Mapprox1.8}$) in agreement with X-ray estimates. Finally, we evaluated the rotation measure of the northern relic at 6.6 GHz. These results provide new insights on the magnetic structure of the relic, but further observations are needed to clarify the nature of the observed Faraday rotation.
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. NW of the cluster, $sim 0.7$ Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the ICM from the direction of a galaxy filament to the SE. We detect a density discontinuity NNE of this core which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100-300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this AGN leads into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot $gtrsim 20$ keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا