No Arabic abstract
We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-23.7 (z=0.39, M_500 = 8.39 x 10^(14) M_Sun). Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise level of ~11 microJy/beam on the wide-band (1.1-3.1 GHz), full-resolution (~5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published. We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio sources. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied 1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology. While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift radio-loud clusters in the same mass range, it shows a similar correlation with the cluster virial radius, as expected in the framework of hierarchical structure formation.
A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ($sim$ 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. We detect a giant radio halo in PSZ2 G284.97-23.69 (z=0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z=0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio halos with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters.
We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from a NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, has an extent of ~1 Mpc and a radio power of ~5x 10^24 W/Hz at 1.4 GHz. Its integrated radio spectrum has a slope of alpha~1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMM-Newton X-ray data shows that the cluster is hot (~10 keV) and disturbed, consistent with X-ray selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.
We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z=0.596) with the GMRT at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observations show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of $17pm5$ mJy, resulting in a 1.4 GHz radio power of ($10.4pm3.5) times 10^{24}$ W Hz$^{-1}$. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of $-0.84pm0.12$ for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.
Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2-4420 (SPT-CL J0232-4421, $z=0.2836$) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster like typical radio mini-halos. However the total extent of it is $550times800$ kpc$^{2}$, which is larger than mini-halos and similar to that of radio halos. The BCG itself is also a radio source with a marginally resolved core at $7$ (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be $52pm5$ mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is $4.5 times 10^{24}$ W Hz$^{-1}$. The dynamical state of the cluster has been inferred to be relaxed and also as complex depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.
We present deep 1.1-3.1 GHz Australia Telescope Compact Array observations of the radio halo of the bullet cluster, 1E 0657-55.8. In comparison to existing images of this radio halo the detection in our images is at higher significance. The radio halo is as extended as the X-ray emission in the direction of cluster merger but is significantly less extended than the X-ray emission in the perpendicular direction. At low significance we detect a faint second peak in the radio halo close to the X-ray centroid of the smaller sub-cluster (the bullet) suggesting that, similarly to the X-ray emission, the radio halo may consist of two components. Finally, we find that the distinctive shape of the western edge of the radio halo traces out the X-ray detected bow shock. The radio halo morphology and the lack of strong point-to-point correlations between radio, X-ray and weak-lensing properties suggests that the radio halo is still being formed. The colocation of the X-ray shock with a distinctive radio brightness edge illustrates that the shock is influencing the structure of the radio halo. These observations support the theory that shocks and turbulence influence the formation and evolution of radio halo synchrotron emission.