Do you want to publish a course? Click here

Polarization simulations of stellar wind bow shock nebulae. I. The case of electron scattering

83   0   0.0 ( 0 )
 Added by Manisha Shrestha
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow shocks are aspherical structures, light scattering within them produces a net polarization signal even if the region is spatially unresolved. Scattering opacity arising from free electrons and dust leads to a distribution of polarized intensity across the bow shock structure. That polarization encodes information about the shape, composition, opacity, density, and ionisation state of the material within the structure. In this paper we use the Monte Carlo radiative transfer code SLIP to investigate the polarization created when photons scatter in a bow shock-shaped region of enhanced density surrounding a stellar source. We present results assuming electron scattering, and investigate the polarization behaviour as a function of optical depth, temperature, and source of photons for two different cases: pure scattering and scattering with absorption. In both regimes we consider resolved and unresolved cases. We discuss the implication of these results as well as their possible use along with observational data to constrain the properties of observed bow shock systems. In different situations and under certain assumptions, our simulations can constrain viewing angle, optical depth and temperature of the scattering region, and the relative luminosities of the star and shock.



rate research

Read More

We study the polarization produced by scattering from dust in a bow shock-shaped region of enhanced density surrounding a stellar source, using the Monte Carlo radiative transfer code SLIP. Bow shocks are structures formed by the interaction of the winds of fast-moving stars with the interstellar medium. Our previous study focused on the polarization produced in these structures by electron scattering; we showed that polarization is highly dependent on inclination angle and that multiple scattering changes the shape and degree of polarization. In contrast to electron scattering, dust scattering is wavelength-dependent, which changes the polarization behaviour. Here we explore different dust particle sizes and compositions and generate polarized spectral energy distributions for each case. We find that the polarization SED behaviour depends on the dust composition and grain size. Including dust emission leads to polarization changes with temperature at higher optical depth in ways that are sensitive to the orientation of the bow shock. In various scenarios and under certain assumptions, our simulations can constrain the optical depth and dust properties of resolved and unresolved bow shock-shaped scattering regions.Constraints on optical depth can provide estimates of local ISM density for observed bow shocks. We also study the impact of dust grains filling the region between the star and bow shock. We see that as the density of dust between the star and bow shock increases, the resulting polarization is suppressed for all the optical depth regimes.
We present a deep radio-polarimetric observation of the stellar bow shock EB27 associated to the massive star BD+43 3654. This is the only stellar bow shock confirmed to have non-thermal radio emission. We used the Jansky Very Large Array in S band (2 - 4GHz) to test whether this synchrotron emission is polarised. The unprecedented sensitivity achieved allowed us to map even the fainter regions of the bow shock, revealing that the more diffuse emission is steeper and the bow shock brighter than previously reported. No linear polarisation is detected in the bow shock above 0.5%, although we detected polarised emission from two southern sources, probably extragalactic in nature. We modeled the intensity and morphology of the radio emission to better constrain the magnetic field and injected power in relativistic electrons. Finally, we derived a set of more precise parameters for the system EB27-BD+43 3654 using Gaia Early Data Release 3, including the spatial velocity. The new trajectory, back in time, intersects the core of the Cyg OB2 association.
101 - Curtis Struck 2020
Bow-shaped mid-infrared emission regions have been discovered in satellite observations of numerous late-type O and early-type B stars with moderate velocities relative to the ambient interstellar medium. Previously, hydrodynamical bow shock models have been used to study this emission. It appears that such models are incomplete in that they neglect kinetic effects associated with long mean free paths of stellar wind particles, and the complexity of Weibel instability fronts. Wind ions are scattered in the Weibel instability and mix with the interstellar gas. However, they do not lose their momentum and most ultimately diffuse further into the ambient gas like cosmic rays, and share their energy and momentum. Lacking other coolants, the heated gas transfers energy to interstellar dust grains, which radiate it. This process, in addition to grain photo-heating, provides the energy for the emission. A weak R-type ionization front, formed well outside the infrared emission region, generally moderates the interstellar gas flow into the emission region. The theory suggests that the infrared emission process is limited to cases of moderate stellar peculiar velocities, evidently in accord with the observations.
To understand how the circumstellar environments of post-AGB stars develop into planetary nebulae, we initiate a systematic study of 2D axisymmetric hydrodynamic simulations of protoplanetary nebula (pPN) with a modified ZEUS code. The aim of this first work is to compare the structure of prolate ellipsoidal winds into a stationary ambient medium where both media can be either atomic or molecular. We specifically model the early twin-shock phase which generates a decelerating shell. A thick deformed and turbulent shell grows when an atomic wind expands into an atomic medium. In all other cases, the interaction shell region fragments into radial protrusions due to molecular cooling and chemistry. The resulting fingers eliminate any global slip parallel to the shell surface. This rough surface implies that weak shocks are prominent in the excitation of the gas despite the fast speed of advance. This may explain why low excitation molecular hydrogen is found towards the front of elliptical pPN. We constrain molecular dissociative fractions and timescales of fast $mathrm H_2$ winds and the pPN lifetime with wind densities $mathrm{sim10^{5}cm^{-3}}$ and shock speeds of $mathrm{80sim200,km,s^{-1}}$. We identify a variety of stages associated with thermal excitation of H$_2$ near-infrared emission. Generated line emission maps and position-velocity diagrams enable a comparison and distinction with post-AGB survey results. The $mathrm{1to0 , S(1)}$ $&$ $mathrm{2to1 , S(1)}$ lines are lobe-dominated bows rather than bipolar shells.
68 - N. Bucciantini 2020
Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found also associated to TeV halos, with a large variety of morphologies. They offer a unique environment where the pulsar wind can be studied by modelling its interaction with the surrounding ambient medium, in a fashion that is different/complementary from the canonical Plerions. These systems have also been suggested as the possible origin of the positron excess detected by AMS and PAMELA, in contrast to dark matter. I will present results from 3D Relativistic MHD simulations of such nebulae. On top of these simulations we computed the expected emission signatures, the properties of high energy particle escape, the role of current sheets in channeling cosmic rays, the level of turbulence and magnetic amplification, and how they depend on the wind structure and magnetisation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا