Do you want to publish a course? Click here

Axioms for Modelling Cubical Type Theory in a Topos

258   0   0.0 ( 0 )
 Added by Thorsten Wissmann
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The homotopical approach to intensional type theory views proofs of equality as paths. We explore what is required of an object $I$ in a topos to give such a path-based model of type theory in which paths are just functions with domain $I$. Cohen, Coquand, Huber and Mortberg give such a model using a particular category of presheaves. We investigate the extent to which their model construction can be expressed in the internal type theory of any topos and identify a collection of quite weak axioms for this purpose. This clarifies the definition and properties of the notion of uniform Kan filling that lies at the heart of their constructive interpretation of Voevodskys univalence axiom. (This paper is a revised and expanded version of a paper of the same name that appeared in the proceedings of the 25th EACSL Annual Conference on Computer Science Logic, CSL 2016.)



rate research

Read More

209 - Bas Spitters 2016
Coquands cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstones topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we show that it can also be a target for cubical realization by showing that Coquands cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval in the topos of cubical sets, we construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets.
We exhibit a computational type theory which combines the higher-dimensional structure of cartesian cubical type theory with the internal parametricity primitives of parametric type theory, drawing out the similarities and distinctions between the two along the way. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic types, including functions between higher inductive types, and we show by example how relativity can be used to characterize the relational interpretation of inductive types.
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-Lof type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that CTT can be given semantics in presheaves on the product of the cube category and a small category with an initial object. We then show that the category of presheaves on the product of the cube category and omega provides semantics for GCTT.
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, observe how cubical equality regularizes parametric type theory, and examine the similarities and discrepancies between cubical and parametric type theory, which are closely related. We also abstract a formal interface to the computational interpretation and show that this also has a presheaf model.
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-Lof type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا