Do you want to publish a course? Click here

Free-space graphene/silicon photodetectors operating at 2 micron

123   0   0.0 ( 0 )
 Added by Maurizio Casalino
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the design, the fabrication and the characterization of Schottky graphene/silicon photodetectors, operating at both 2 micron and room temperature. The graphene/silicon junction has been carefully: characterized device shows a non ideal behaviour with the increasing temperature and the interfacial trap density has been measured as 1.1x10^14 eV^-1cm^-2. Photodetectors are characterized by an internal (external) responsivity of 10.3 mA/W (0.16 mA/W) in an excellent agreement with the theory. Our devices pave the way for developing hybrid graphene-Si free-space illuminated PDs operating at 2 micron, for free-space optical communications, optical coherence tomography and light-radars.



rate research

Read More

A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorption in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphene-metal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 {mu}m, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 {mu}m with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 {mu}m. The measured responsivity is about 0.4 A/W under a bias voltage of -0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 {mu}m.
We report vertically-illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the PDs are integrated with an optical cavity, resulting in multiple reflections at resonance, and enhanced absorption in graphene. Our devices have wavelength-dependent photoresponse with external (internal) responsivity~20mA/W (0.25A/W). The spectral-selectivity may be further tuned by varying the cavity resonant wavelength. Our devices pave the way for developing high responsivity hybrid graphene-Si free-space illuminated PDs for free-space optical communications, coherence optical tomography and light-radars
Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatible with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the low responsivity - electrical output per optical input - of GPDs compared to conventional PDs. Here we overcome this shortfall by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve $>$90% light absorption in a $sim$6 $mu$m SLG channel along the Si waveguide. Exploiting the cavity-enhanced light-matter interaction, causing carriers in SLG to reach $sim$400 K for an input power of $sim$0.6 mW, we get a voltage responsivity $sim$90 V/W, demonstrating the feasibility of our approach. Our device is capable of detecting data rates up to 20 Gbit/s, with a receiver sensitivity enabling it to operate at a 10$^{-9}$ bit-error rate, on par with mature semiconductor technology. The natural generation of a voltage rather than a current, removes the need for transimpedance amplification, with a reduction of the energy-per-bit cost and foot-print, when compared to a traditional semiconductor-based receiver.
Graphene is a 2D material with appealing electronic and optoelectronic properties. It is a zero-bandgap material with valence and conduction bands meeting in a single point (Dirac point) in the momentum space. Its conductivity can be changed by shifting the Fermi level energy via an external electric field. This important property determines broadband and tunable absorption at optical frequencies. Moreover, its conductivity is a complex quantity, i.e. Graphene exhibits both electro-absorption and electro-refraction tunability, and this is an intriguing property for photonic applications. For example, it can be combined as an active material for silicon waveguides to realize efficient detectors, switches and modulators. In this paper, we review our results in the field, focusing on graphene-based optical modulators integrated on Silicon photonic platforms. Results obtained in the fabrication of single- and double-layer capacitive modulators are reported showing intensity and phase modulation, resilience of the generated signals to chromatic dispersion because of proper signal chirp and operation up to 50 Gb/s.
We demonstrated a silicon integrated microring modulator working at the 2-um waveband with an L-shaped PN junction. 15-GHz 3-dB electro-optic bandwidth and <1 Vcm modulation efficiency for 45-Gbps NRZ-OOK signaling is achieved at 1960 nm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا