No Arabic abstract
Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatible with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the low responsivity - electrical output per optical input - of GPDs compared to conventional PDs. Here we overcome this shortfall by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve $>$90% light absorption in a $sim$6 $mu$m SLG channel along the Si waveguide. Exploiting the cavity-enhanced light-matter interaction, causing carriers in SLG to reach $sim$400 K for an input power of $sim$0.6 mW, we get a voltage responsivity $sim$90 V/W, demonstrating the feasibility of our approach. Our device is capable of detecting data rates up to 20 Gbit/s, with a receiver sensitivity enabling it to operate at a 10$^{-9}$ bit-error rate, on par with mature semiconductor technology. The natural generation of a voltage rather than a current, removes the need for transimpedance amplification, with a reduction of the energy-per-bit cost and foot-print, when compared to a traditional semiconductor-based receiver.
Two dimensional (2D) materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned pi electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene (TPE) monomers with photoelectric activity, we designed and synthesized photosensitive 2D COFs with highly ordered topologies and grew 2D COFs in situ on graphene to form well ordered COF graphene heterostructures. Ultrasensitive photodetectors were successfully fabricated with the COFETBC TAPT graphene heterostructure and exhibited an excellent overall performance. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. Our research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high performance applications in optoelectronics and many other fields.
Graphene has extraordinary electro-optic properties and is therefore a promising candidate for monolithic photonic devices such as photodetectors. However, the integration of this atom-thin layer material with bulky photonic components usually results in a weak light-graphene interaction leading to large device lengths limiting electro-optic performance. In contrast, here we demonstrate a plasmonic slot graphene photodetector on silicon-on-insulator platform with high-responsivity given the 5 um-short device length. We observe that the maximum photocurrent, and hence the highest responsivity, scales inversely with the slot gap width. Using a dual-lithography step, we realize 15 nm narrow slots that show a 15-times higher responsivity per unit device-length compared to photonic graphene photodetectors. Furthermore, we reveal that the back-gated electrostatics is overshadowed by channel-doping contributions induced by the contacts of this ultra-short channel graphene photodetector. This leads to quasi charge neutrality, which explains both the previously-unseen offset between the maximum photovoltaic-based photocurrent relative to graphenes Dirac point and the observed non-ambipolar transport. Such micrometer compact and absorption-efficient photodetectors allow for short-carrier pathways in next-generation photonic components, while being an ideal testbed to study short-channel carrier physics in graphene optoelectronics.
Silicon photonics is being extended from the near-infrared (near-IR) window of 1.3-1.5 {mu}m for optical fiber communications to the mid-infrared (mid-IR) wavelength-band of 2 {mu}m or longer for satisfying the increasing demands in many applications. Mid-IR waveguide photodetectors on silicon have attracted intensive attention as one of the indispensable elements for various photonic systems. Previously high-performance waveguide photodetectors on silicon were realized for the near-IR window of 1.3-1.5 {mu}m by introducing another semiconductor material (e.g., Ge, and III-V compounds) in the active region. Unfortunately, these traditional semiconductor materials do not work well for the wavelength of ~2 {mu}m or longer because the light absorption becomes very weak. As an alternative, two-dimensional materials provide a new and promising option for enabling active photonic devices on silicon. Here black-phosphorus (BP) thin films with optimized medium thicknesses (~40 nm) are introduced as the active material for light absorption and silicon/BP hybrid ridge waveguide photodetectors are demonstrated with a high responsivity at a low bias voltage. And up to 4.0Gbps data transmission is achieved at 2{mu}m.
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientific and technologically-relevant properties leading to strong light-matter-interaction devices due to effects such as reduced coulomb screening or excitonic states. However, no efficient photodetector in the telecommunication C-band using 2D materials has been realized yet. Here, we demonstrate a MoTe2-based photodetector featuring strong photoresponse (responsivity = 0.5 A/W) operating at 1550nm on silicon photonic waveguide enabled by engineering the strain (4%) inside the photo-absorbing transition-metal-dichalcogenide film. We show that an induced tensile strain of ~4% reduces the bandgap of MoTe2 by about 0.2 eV by microscopically measuring the work-function across the device. Unlike Graphene-based photodetectors relying on a gapless band structure, this semiconductor-2D material detector shows a ~100X improved dark current enabling an efficient noise-equivalent power of just 90 pW/Hz^0.5. Such strain-engineered integrated photodetector provides new opportunities for integrated optoelectronic systems.
We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external responsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules