Do you want to publish a course? Click here

Impulse source of high energy neutrons emitted by fusion reactions after compression of D-T gas by cumulative detonation waves

103   0   0.0 ( 0 )
 Added by Vitaliy D. Rusov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop the physical model and the system of equations for the impulse neutron source (INS) of high-energy neutrons ($sim$14 MeV) emitted by fusion reactions during compression of D-T gas by cumulative detonation waves. The system of INS equations includes a system of gas dynamic equations that takes into account the energy transfer by radiation, equations for the radiation flux, the equation of the shock adiabat (the Hugoniot adiabat) for a compressed gas, and the equation for the neutron yield. We perform the INS dynamics simulation for the spherical and cylindrical geometries, and calculate maximum temperatures of D-T plasma, its density and neutron yield in the pulse. The obtained temperature estimates and simulation results show that the thermonuclear fusion temperatures are reached within this approach, and the fusion reactions proceed. Their yield determines the yield of neutrons.

rate research

Read More

We report a laser-driven neutron source with high yield ($>10^8$/J) and high peak flux ($>10^{25}$/cm$^2$/s) derived from high-temperature deuteron-deuteron fusion reactions. The neutron yield and the fusion temperature ($sim 200$ keV) in our experiment are respectively two orders of magnitude and one order of magnitude higher than any previous laser-induced D-D fusion reaction. The high-temperature plasma is generated from thin ($sim 2,mu$m), solid-density deuterium targets, produced by a cryogenic jet, irradiated by a 140 fs, 130 J petawatt laser with an F/3 off-axis parabola and a plasma mirror achieving fast volumetric heating of the target. The fusion temperature and neutron fluxes achieved here suggest future laser experiments can take advantage of neutrons to diagnose the plasma conditions and come closer to laboratory study of astrophysically-relevant nuclear physics.
Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10 % of the estimated total electron losses from the plasma.
An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the T+T->2n+alpha reaction. The calculation includes the n-alpha and n-n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from T+T as well as particle spectra from 3He+3He. The R-matrix approach presented here is very general, and can be adapted to a wide variety of problems with three-body final states.
134 - C. Labaune 2013
The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
The generation of thin and high density plasma slabs at high repetition rate is a key issue for ultra-high intensity laser applications. We present a scheme to create such plasma slabs, based on the propagation and collision in a gas jet of two counter-propagating blast waves (BW). Each BW is launched by a sudden and local heating induced by a nanosecond laser beam that propagates along the side of the jet. The resulting cylindrical BW expands perpendicular to the beam. The shock front, bent by the gas jet density gradient, pushes and compresses the plasma toward the jet center. By using two parallel ns laser beams, this scheme enables to tailor independently two opposite sides of the jet, while avoiding the damage risks associated with counterpropagating laser beams. A parametric study is performed using two and three dimensional hydrodynamic, as well as kinetic simulations. The BWs bending combined with the collision in a stagnation regime increases the density by more than 10 times and generates a very thin (down to few microns), near to over-critical plasma slab with a high density contrast (> 100), and a lifetime of a few hundred picoseconds. Two dimensional particle-in-cell simulations are used to study the influence of plasma tailoring on proton acceleration by a high-intensity sub-picosecond laser pulse. Tailoring the plasma not only at the entrance but also the exit side of the ps-pulse enhances the proton beam collimation, increases significantly the number of high energy protons, as well as their maximum energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا