No Arabic abstract
Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 ms. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g-factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.
The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin $^{88}$Sr$_2$ molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.
Using optical Ramsey interferometry, we precisely measure the laser-induced AC-stark shift on the $S_{1/2}$ -- $D_{5/2}$ quantum bit transition near 729 nm in a single trapped $^{40}$Ca$^+$ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a $n times 2pi$ rotation of the quantum bit.
Improvements in both theory and frequency metrology of few-electron systems such as hydrogen and helium have enabled increasingly sensitive tests of quantum electrodynamics (QED), as well as ever more accurate determinations of fundamental constants and the size of the nucleus. At the same time advances in cooling and trapping of neutral atoms have revolutionized the development of increasingly accurate atomic clocks. Here, we combine these fields to reach the highest precision on an optical tranistion in the helium atom to date by employing a Bose-Einstein condensate confined in a magic wavelength optical dipole trap. The measured transition accurately connects the ortho- and parastates of helium and constitutes a stringent test of QED theory. In addition we test polarizability calculations and ultracold scattering properties of the helium atom. Finally, our measurement probes the size of the nucleus at a level exceeding the projected accuracy of muonic helium measurements currently being performed in the context of the proton radius puzzle.
Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of $10^{-18}$ and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions, while allowing systematic shifts as low as $10^{-19}$. Using a newly developed technique, we observe 3D excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and sub-nanometer amplitude uncertainties. We show that in ion Coulomb crystals of 400$mu$m and 2mm length, time dilation shifts of In${}^+$ ions due to micromotion can be close to $1times10^{-19}$ and below $10^{-18}$, respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, this work opens up the path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.
We here report on the realization of an electrodynamic trap, capable of trapping neutral atoms and molecules in both low-field and high-field seeking states. Confinement in three dimensions is achieved by switching between two electric field configurations that have a saddle-point at the center of the trap, i.e., by alternating a focusing and a defocusing force in each direction. AC trapping of 15ND3 molecules is experimentally demonstrated, and the stability of the trap is studied as a function of the switching frequency. A 1 mK sample of 15ND3 molecules in the high-field seeking component of the |J,K>=|1,1> level, the ground-state of para-ammonia, is trapped in a volume of about 1 mm^3.