No Arabic abstract
A superconducting loop stores persistent current without any ohmic loss, making it an ideal platform for energy efficient memories. Conventional superconducting memories use an architecture based on Josephson junctions (JJs) and have demonstrated access times less than 10 ps and power dissipation as low as $10^{-19}$ J. However, their scalability has been slow to develop due to the challenges in reducing the dimensions of JJs and minimizing the area of the superconducting loops. In addition to the memory itself, complex readout circuits require additional JJs and inductors for coupling signals, increasing the overall area. Here, we have demonstrated a superconducting memory based solely on lithographic nanowires. The small dimensions of the nanowire ensure that the device can be fabricated in a dense area in multiple layers, while the high kinetic inductance makes the loop essentially independent of geometric inductance, allowing it to be scaled down without sacrificing performance. The memory is operated by a group of nanowire cryotrons patterned alongside the storage loop, enabling us to reduce the entire memory cell to 3 {mu}m $times $ 7 {mu}m in our proof-of-concept device. In this work we present the operation principles of a superconducting nanowire memory (nMem) and characterize its bit error rate, speed, and power dissipation.
As the limits of traditional von Neumann computing come into view, the brains ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the success of these largescale neural networks is a power-efficient spiking element that is scalable and easily interfaced with traditional control electronics. In this work, we present a spiking element fabricated from superconducting nanowires that has pulse energies on the order of ~10 aJ. We demonstrate that the device reproduces essential characteristics of biological neurons, such as a refractory period and a firing threshold. Through simulations using experimentally measured device parameters, we show how nanowire-based networks may be used for inference in image recognition, and that the probabilistic nature of nanowire switching may be exploited for modeling biological processes and for applications that rely on stochasticity.
Superconducting nanowire single-photon detectors (SNSPDs) are the highest performing photon-counting technology in the near-infrared (NIR). Due to delay-line effects, large area SNSPDs typically trade-off timing resolution and detection efficiency. Here, we introduce a detector design based on transmission line engineering and differential readout for device-level signal conditioning, enabling a high system detection efficiency and a low detector jitter, simultaneously. To make our differential detectors compatible with single-ended time taggers, we also engineer analog differential-to-single-ended readout electronics, with minimal impact on the system timing resolution. Our niobium nitride differential SNSPDs achieve $47.3,% pm 2.4,%$ system detection efficiency and sub-$10,mathrm{ps}$ system jitter at $775,mathrm{nm}$, while at $1550,mathrm{nm}$ they achieve $71.1,% pm 3.7,%$ system detection efficiency and $13.1,mathrm{ps} pm 0.4,mathrm{ps}$ system jitter. These detectors also achieve sub-100 ps timing response at one one-hundredth maximum level, $30.7,mathrm{ps} pm 0.4,mathrm{ps}$ at $775,mathrm{nm}$ and $47.6,mathrm{ps} pm 0.4,mathrm{ps}$ at $1550,mathrm{nm}$, enabling time-correlated single-photon counting with high dynamic range response functions. Furthermore, thanks to the differential impedance-matched design, our detectors exhibit delay-line imaging capabilities and photon-number resolution. The properties and high-performance metrics achieved by our system make it a versatile photon-detection solution for many scientific applications.
To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by absorption of a photon. Our recent experimental results show that, due to the effect of kinetic inductance, for a SNSPD made of a nanowire of sufficient length, its geometry length can be comparable to or even longer than the effective wavelength of frequencies contained in the output pulse. In other words, a superconducting nanowire can behave as a distributed transmission line so that the readout pulse depends on the photon detection location and the transmission line properties of the nanowire. Here, we develop a distributed model for a superconducting nanowire and apply it to simulate the output performance of a long nanowire designed into a coplanar waveguide. We compare this coplanar waveguide geometry to a conventional meander nanowire geometry. The simulation results agree well with our experimental observations. With this distributed model, we discussed the importance of microwave design of a nanowire and how impedance matching can affect the output pulse shape. We also discuss how the distributed model affects the growth and decay of the photon-triggered resistive hotspot.
Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past experimental demonstrations have had ground-based applications. In this work we demonstrate a SNSPD system using a hybrid cryocooler compatible with space applications. With a minimum operational temperature of 2.8 K, this SNSPD system presents a maximum system detection efficiency of over 50% and a timing jitter of 48 ps, which paves the way for various space applications.
Superconducting nanowire single photon detectors (SNSPDs) offer high-quantum-efficiency and low-dark-count-rate single photon detection. In a growing number of cases, large magnetic fields are being incorporated into quantum microscopes, nanophotonic devices, and sensors for nuclear and high-energy physics that rely on SNSPDs, but superconducting devices generally operate poorly in large magnetic fields. Here, we demonstrate robust performance of amorphous SNSPDs in magnetic fields of up to $pm 6$ T with a negligible dark count rate and unchanged quantum efficiency at typical bias currents. Critically, we also show that in the electrothermal oscillation regime, the SNSPD can be used as a magnetometer with sensitivity of better than 100 $mathrm{mu T/sqrt{Hz}}$ and as a thermometer with sensitivity of 20 $mathrm{mu K/sqrt{Hz}}$ at 1 K. Thus, a single photon detector integrated into a quantum device can be used as a multifunctional quantum sensor capable of describing the temperature and magnetic field on-chip simply by varying the bias current to change the operating modality from single photon detection to thermometry or magnetometry.