No Arabic abstract
As the limits of traditional von Neumann computing come into view, the brains ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the success of these largescale neural networks is a power-efficient spiking element that is scalable and easily interfaced with traditional control electronics. In this work, we present a spiking element fabricated from superconducting nanowires that has pulse energies on the order of ~10 aJ. We demonstrate that the device reproduces essential characteristics of biological neurons, such as a refractory period and a firing threshold. Through simulations using experimentally measured device parameters, we show how nanowire-based networks may be used for inference in image recognition, and that the probabilistic nature of nanowire switching may be exploited for modeling biological processes and for applications that rely on stochasticity.
Coarse-graining microscopic models of biological neural networks to obtain mesoscopic models of neural activities is an essential step towards multi-scale models of the brain. Here, we extend a recent theory for mesoscopic population dynamics with static synapses to the case of dynamic synapses exhibiting short-term plasticity (STP). Under the assumption that spike arrivals at synapses have Poisson statistics, we derive analytically stochastic mean-field dynamics for the effective synaptic coupling between finite-size populations undergoing Tsodyks-Markram STP. The novel mean-field equations account for both finite number of synapses and correlations between the neurotransmitter release probability and the fraction of available synaptic resources. Comparisons with Monte Carlo simulations of the microscopic model show that in both feedforward and recurrent networks the mesoscopic mean-field model accurately reproduces stochastic realizations of the total synaptic input into a postsynaptic neuron and accounts for stochastic switches between Up and Down states as well as for population spikes. The extended mesoscopic population theory of spiking neural networks with STP may be useful for a systematic reduction of detailed biophysical models of cortical microcircuits to efficient and mathematically tractable mean-field models.
In this paper we present a novel approach to automatically infer parameters of spiking neural networks. Neurons are modelled as timed automata waiting for inputs on a number of different channels (synapses), for a given amount of time (the accumulation period). When this period is over, the current potential value is computed considering current and past inputs. If this potential overcomes a given threshold, the automaton emits a broadcast signal over its output channel , otherwise it restarts another accumulation period. After each emission, the automaton remains inactive for a fixed refractory period. Spiking neural networks are formalised as sets of automata, one for each neuron, running in parallel and sharing channels according to the network structure. Such a model is formally validated against some crucial properties defined via proper temporal logic formulae. The model is then exploited to find an assignment for the synaptical weights of neural networks such that they can reproduce a given behaviour. The core of this approach consists in identifying some correcting actions adjusting synaptical weights and back-propagating them until the expected behaviour is displayed. A concrete case study is discussed.
With the rising societal demand for more information-processing capacity with lower power consumption, alternative architectures inspired by the parallelism and robustness of the human brain have recently emerged as possible solutions. In particular, spiking neural networks (SNNs) offer a bio-realistic approach, relying on pulses analogous to action potentials as units of information. While software encoded networks provide flexibility and precision, they are often computationally expensive. As a result, hardware SNNs based on the spiking dynamics of a device or circuit represent an increasingly appealing direction. Here, we propose to use superconducting nanowires as a platform for the development of an artificial neuron. Building on an architecture first proposed for Josephson junctions, we rely on the intrinsic nonlinearity of two coupled nanowires to generate spiking behavior, and use electrothermal circuit simulations to demonstrate that the nanowire neuron reproduces multiple characteristics of biological neurons. Furthermore, by harnessing the nonlinearity of the superconducting nanowires inductance, we develop a design for a variable inductive synapse capable of both excitatory and inhibitory control. We demonstrate that this synapse design supports direct fanout, a feature that has been difficult to achieve in other superconducting architectures, and that the nanowire neurons nominal energy performance is competitive with that of current technologies.
We introduce an exactly integrable version of the well-known leaky integrate-and-fire (LIF) model, with continuous membrane potential at the spiking event, the c-LIF. We investigate the dynamical regimes of a fully connected network of excitatory c-LIF neurons in the presence of short-term synaptic plasticity. By varying the coupling strength among neurons, we show that a complex chaotic dynamics arises, characterized by scale free avalanches. The origin of this phenomenon in the c-LIF can be related to the order symmetry breaking in neurons spike-times, which corresponds to the onset of a broad activity distribution. Our analysis uncovers a general mechanism through which networks of simple neurons can be attracted to a complex basin in the phase space.
Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long bitlines and wordlines in a memristive crossbar are a major source of parasitic voltage drops, which create current asymmetry. Through circuit simulations, we show the significant endurance variation that results from this asymmetry. Therefore, if the critical memristors (ones with lower endurance) are overutilized, they may lead to a reduction of the crossbars lifetime. We propose eSpine, a novel technique to improve lifetime by incorporating the endurance variation within each crossbar in mapping machine learning workloads, ensuring that synapses with higher activation are always implemented on memristors with higher endurance, and vice versa. eSpine works in two steps. First, it uses the Kernighan-Lin Graph Partitioning algorithm to partition a workload into clusters of neurons and synapses, where each cluster can fit in a crossbar. Second, it uses an instance of Particle Swarm Optimization (PSO) to map clusters to tiles, where the placement of synapses of a cluster to memristors of a crossbar is performed by analyzing their activation within the workload. We evaluate eSpine for a state-of-the-art neuromorphic hardware model with phase-change memory (PCM)-based memristors. Using 10 SNN workloads, we demonstrate a significant improvement in the effective lifetime.