No Arabic abstract
The Landau bands of mirror symmetric 2D Dirac semi-metals (for example odd-layers of ABA-graphene) can be identified by their parity with respect to mirror symmetry. This symmetry facilitates a new class of counter-propagating Hall states at opposite but equal electron and hole filling factors $| u_{pm}|=1/m$ ({it m} odd). Here, we propose a Laughlin-like correlated liquid wavefunction, at the charge neutrality point, that exhibits fractionally charged quasi-particle/hole pair excitation of opposite parity. Using a bosonized one-dimensional edge state theory, we show that the longitudinal conductance of this state, $sigma_{xx} = 2e^2/(m h)$, is robust to short-ranged inter-mode interactions.
New insights into transport properties of nanostructures with a linear dispersion along one direction and a quadratic dispersion along another are obtained by analysing their spectral stability properties under small perturbations. Physically relevant sufficient and necessary conditions to guarantee the existence of discrete eigenvalues are derived under rather general assumptions on external fields. One of the most interesting features of the analysis is the evident spectral instability of the systems in the weakly coupled regime. The rigorous theoretical results are illustrated by numerical experiments and predictions for physical experiments are made.
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films.
The quantum Hall effect is studied in the topological insulator BiSbTeSe$_2$. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the electron-doped side of the Dirac cone and the other surface to the hole-doped side, the quantum Hall edge channels are counter-propagating. The opposite edge mode direction, combined with the opposite helicities of top and bottom surfaces, allows for scattering between these counter-propagating edge modes. The total Hall conductance is integer valued only when the scattering is strong. For weaker interaction, a non-integer quantum Hall effect is expected and measured.
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.
We study the interaction effect in a three dimensional Dirac semimetal and find that two competing orders, charge-density-wave orders and nematic orders, can be induced to gap the Dirac points. Applying a magnetic field can further induce an instability towards forming these ordered phases. The charge density wave phase is similar as that of a Weyl semimetal while the nematic phase is unique for Dirac semimetals. Gapless zero modes are found in the vortex core formed by nematic order parameters, indicating the topological nature of nematic phases. The nematic phase can be observed experimentally using scanning tunnelling microscopy.