Do you want to publish a course? Click here

Zitterbewegung and symmetry switching in Kleins four-group

50   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Zitterbewegung is the exotic phenomenon associated either with the relativistic electron-positron rapid oscillation or to the electron-hole transitions in the narrow gap semiconductors. In the present work, we enlarge concept of Zitterbewegung and show that the trembling motion may occur due to the dramatic changes in the symmetry of the system. In particular, we exploit a paradigmatic model of quantum chaos, quantum mathematical pendulum (universal Hamiltonian). The symmetry group of this system is the Kleins four-group that possess three invariant subgroups. The energy spectrum of the system parametrically depends on the height of the potential barrier, and contains degenerate and non-degenerate areas, corresponding to the different symmetry subgroups. Change in the height of the potential barrier switches the symmetry subgroup and leads to the trembling motion. We analyzed mean square fluctuations of the velocity operator and observed that trembling enhances for the highly excited states. We observed the link between the phenomena of trembling motion and uncertainty relations of noncommutative operators of the system.



rate research

Read More

The properties of the four families of special functions of three real variables, called here C-, S-, S^s- and S^l-functions, are studied. The S^s- and S^l-functions are considered in all details required for their exploitation in Fourier expansions of digital data, sampled on finite fragment of lattices of any density and of the 3D symmetry imposed by the weight lattices of B_3 and C_3 simple Lie algebras/groups. The continuous interpolations, which are induced by the discrete expansions, are exemplified and compared for some model functions.
134 - Alain Albouy 2007
We study the relationship between the masses and the geometric properties of central configurations. We prove that in the planar four-body problem, a convex central configuration is symmetric with respect to one diagonal if and only if the masses of the two particles on the other diagonal are equal. If these two masses are unequal, then the less massive one is closer to the former diagonal. Finally, we extend these results to the case of non-planar central configurations of five particles.
Families of three-body Hamiltonian systems in one dimension have been recently proved to be maximally superintegrable by interpreting them as one-body systems in the three-dimensional Euclidean space, examples are the Calogero, Wolfes and Tramblay Turbiner Winternitz systems. For some of these systems, we show in a new way how the superintegrability is associated with their dihedral symmetry in the three-dimensional space, the order of the dihedral symmetries being associated with the degree of the polynomial in the momenta first integrals. As a generalization, we introduce the analysis of integrability and superintegrability of four-body systems in one dimension by interpreting them as one-body systems with the symmetries of the Platonic polyhedra in the four-dimensional Euclidean space. The paper is intended as a short review of recent results in the sector, emphasizing the relevance of discrete symmetries for the superintegrability of the systems considered.
A family of discontinuous symplectic maps on the cylinder is considered. This family arises naturally in the study of nonsmooth Hamiltonian dynamics and in switched Hamiltonian systems. The transformation depends on two parameters and is a canonical model for the study of bounded and unbounded behavior in discontinuous area-preserving mappings due to nonlinear resonances. This paper provides a general description of the map and points out its connection with another map considered earlier by Kesten. In one special case, an unbounded orbit is explicitly constructed.
129 - Tomoki Ohsawa 2014
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noethers theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn, and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا