Do you want to publish a course? Click here

A memory mechanism based on two dimensional code of neurosome pattern

115   0   0.0 ( 0 )
 Added by Jingjing Xu
 Publication date 2017
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We have recognized that 2D codes, i.e., a group of strongly connected neurosomes that can be simultaneously excited, are the basic data carriers for memory in a brain. An echoing mechanism between two neighboring layers of neurosomes is assumed to establish temporary memory, and repeating processes enhance the formation of long-term memory. Creation and degradation of memory information are statistically. The maximum capacity of memory storage in a human brain is estimated to be one billion of 2D codes. By triggering one or more neurosomes in a neurosome-based 2D code, the whole strongly connected neurosome network is capable of exciting simultaneously and projecting its excitation onto an analysis layer of neurons in cortex, thus retrieving the stored memory data. The capability of comparing two 2D codes in the analysis layer is one of the major brain functions.



rate research

Read More

64 - Christoph Simon 2018
The hard problem of consciousness is the question how subjective experience arises from brain matter. I suggest exploring the possibility that quantum physics could be part of the answer. The simultaneous unity and complexity of subjective experience is difficult to understand from a classical physics perspective. In contrast, quantum entanglement is naturally both complex and unified. Moreover the concept of matter is much more subtle in quantum physics compared to classical physics, and quantum computing shows that quantum effects can be useful for information processing. Building on recent progress in quantum technology and neuroscience, I propose a concrete hypothesis as a basis for further investigation, namely that subjective experience is related to the dynamics of a complex entangled state of spins, which is continuously generated and updated through the exchange of photons. Spins in condensed matter systems at room or body temperature can have coherence times in the relevant range for subjective experience (milliseconds to seconds). Photons are well suited for distributing entanglement over macroscopic distances. Neurons emit photons, reactive oxygen species in the mitochondria being likely sources. Opsins, light-sensitive proteins that are plausible single-photon detectors, exist in the brain and are evolutionarily conserved, suggesting that they serve a function. We have recently shown by detailed numerical modeling that axons can plausibly act as photonic waveguides. The oxygen molecule, which has non-zero electronic spin and emits photons, might serve as an interface between photons and spins. The achievable photon rates seem to be more than sufficient to support the bandwidth of subjective experience. The proposed hypothesis raises many interesting experimental and theoretical questions in neuroscience, quantum physics, evolutionary biology, psychophysics, and philosophy.
Despite being of vital importance to the immune system, the mechanism by which cells engulf relatively large solid particles during phagocytosis is still poorly understood. From movies of neutrophil phagocytosis of polystyrene beads, we measure the fractional engulfment as a function of time and demonstrate that phagocytosis occurs in two distinct stages. During the first stage, engulfment is relatively slow and progressively slows down as phagocytosis proceeds. However, at approximately half-engulfment, the rate of engulfment increases dramatically, with complete engulfment attained soon afterwards. By studying simple mathematical models of phagocytosis, we suggest that the first stage is due to a passive mechanism, determined by receptor diffusion and capture, whereas the second stage is more actively controlled, perhaps with receptors being driven towards the site of engulfment. We then consider a more advanced model that includes signaling and captures both stages of engulfment. This model predicts that there is an optimum ligand density for quick engulfment. Further, we show how this model explains why non-spherical particles engulf quickest when presented tip-first. Our findings suggest that active regulation may be a later evolutionary innovation, allowing fast and robust engulfment even for large particles.
This paper reports nano-CT analysis of brain tissues of schizophrenia and control cases. The analysis revealed that: (1) neuronal structures vary between individuals, (2) the mean curvature of distal neurites of the schizophrenia cases was 1.5 times higher than that of the controls, and (3) dendritic spines were categorized into two geometrically distinctive groups, though no structural differences were observed between the disease and control cases. The differences in the neurite curvature result in differences in the spatial trajectory and hence alter neuronal circuits. We suggest that the structural alteration of neurons in the schizophrenia cases should reflect psychiatric symptoms of schizophrenia.
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP (kink) was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.
234 - Lester Ingber 2012
Recent calculations further supports the premise that large-scale synchronous firings of neurons may affect molecular processes. The context is scalp electroencephalography (EEG) during short-term memory (STM) tasks. The mechanism considered is $mathbf{Pi} = mathbf{p} + q mathbf{A}$ (SI units) coupling, where $mathbf{p}$ is the momenta of free $mathrm{Ca}^{2+}$ waves $q$ the charge of $mathrm{Ca}^{2+}$ in units of the electron charge, and $mathbf{A}$ the magnetic vector potential of current $mathbf{I}$ from neuronal minicolumnar firings considered as wires, giving rise to EEG. Data has processed using multiple graphs to identify sections of data to which spline-Laplacian transformations are applied, to fit the statistical mechanics of neocortical interactions (SMNI) model to EEG data, sensitive to synaptic interactions subject to modification by $mathrm{Ca}^{2+}$ waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا