Do you want to publish a course? Click here

Statistical mechanics of neocortical interactions: large-scale EEG influences on molecular processes

228   0   0.0 ( 0 )
 Added by Lester Ingber
 Publication date 2012
  fields Biology Physics
and research's language is English
 Authors Lester Ingber




Ask ChatGPT about the research

Recent calculations further supports the premise that large-scale synchronous firings of neurons may affect molecular processes. The context is scalp electroencephalography (EEG) during short-term memory (STM) tasks. The mechanism considered is $mathbf{Pi} = mathbf{p} + q mathbf{A}$ (SI units) coupling, where $mathbf{p}$ is the momenta of free $mathrm{Ca}^{2+}$ waves $q$ the charge of $mathrm{Ca}^{2+}$ in units of the electron charge, and $mathbf{A}$ the magnetic vector potential of current $mathbf{I}$ from neuronal minicolumnar firings considered as wires, giving rise to EEG. Data has processed using multiple graphs to identify sections of data to which spline-Laplacian transformations are applied, to fit the statistical mechanics of neocortical interactions (SMNI) model to EEG data, sensitive to synaptic interactions subject to modification by $mathrm{Ca}^{2+}$ waves.



rate research

Read More

The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherence EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derive a string equation consistent with the global EEG model.
156 - Lester Ingber 2006
There are several kinds of non-invasive imaging methods that are used to collect data from the brain, e.g., EEG, MEG, PET, SPECT, fMRI, etc. It is difficult to get resolution of information processing using any one of these methods. Approaches to integrate data sources may help to get better resolution of data and better correlations to behavioral phenomena ranging from attention to diagnoses of disease. The approach taken here is to use algorithms developed for the authors Trading in Risk Dimensions (TRD) code using modern methods of copula portfolio risk management, with joint probability distributions derived from the authors model of statistical mechanics of neocortical interactions (SMNI). The authors Adaptive Simulated Annealing (ASA) code is for optimizations of training sets, as well as for importance-sampling. Marginal distributions will be evolved to determine their expected duration and stability using algorithms developed by the author, i.e., PATHTREE and PATHINT codes.
Cascading large-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals and/or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.
238 - Lester Ingber 2009
Previous papers have developed a statistical mechanics of neocortical interactions (SMNI) fit to short-term memory and EEG data. Adaptive Simulated Annealing (ASA) has been developed to perform fits to such nonlinear stochastic systems. An N-dimensional path-integral algorithm for quantum systems, qPATHINT, has been developed from classical PATHINT. Both fold short-time propagators (distributions or wave functions) over long times. Previous papers applied qPATHINT to two systems, in neocortical interactions and financial options. textbf{Objective}: In this paper the quantum path-integral for Calcium ions is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. Using fits of this SMNI model to EEG data, including these effects, will help determine if this is a reasonable approach. textbf{Method}: Methods of mathematical-physics for optimization and for path integrals in classical and quantum spaces are used for this project. Studies using supercomputer resources tested various dimensions for their scaling limits. In this paper the quantum path-integral is used to derive a closed-form analytic solution at arbitrary time that is used to calculate interactions with classical-physics SMNI interactions among scales. textbf{Results}: The mathematical-physics and computer parts of the study are successful, in that there is modest improvement of cost/objective functions used to fit EEG data using these models. textbf{Conclusion}: This project points to directions for more detailed calculations using more EEG data and qPATHINT at each time slice to propagate quantum calcium waves, synchronized with PATHINT propagation of classical SMNI.
Cells respond to biophysical and biochemical signals. We developed a composite filament from collagen and silica particles modified to interact with collagen and/or present a laminin epitope (IKVAV) crucial for cell-matrix adhesion and signal transduction. This combines scaffolding and signaling and shows that local tuning of collagen organization enhances cell differentiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا