Do you want to publish a course? Click here

Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

60   0   0.0 ( 0 )
 Added by Marat Gafurov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.



rate research

Read More

Optically addressable spins are actively investigated in quantum communication, processing and sensing. Optical and spin coherence lifetimes, which determine quantum operation fidelity and storage time, are often limited by spin-spin interactions, which can be decreased by polarizing spins in their lower energy state using large magnetic fields and/or mK range temperatures. Here, we show that optical pumping of a small fraction of ions with a fixed frequency laser, coupled with spin-spin interactions and spin diffusion, leads to substantial spin polarization in a paramagnetic rare earth doped crystal, $^{171}$Yb$^{3+}$:YSO. Indeed, up to more than 90 % spin polarizations have been achieved at 2 K and zero magnetic field. Using this spin polarization mechanism, we furthermore demonstrate an increase in optical coherence lifetime from 0.3 ms to 0.8 ms, due to a strong decrease in spin-spin interactions. This effect opens the way to new schemes for obtaining long optical and spin coherence lifetimes in various solid-state systems such as ensembles of rare earth ions or color centers in diamond, which is of interest for a broad range of quantum technologies.
The hyperfine interactions at the uranium site in the antiferromagnetic USb2 compound were calculated within the density functional theory (DFT) employing the augmented plane wave plus local orbital (APW+lo) method. We investigated the dependence of the nuclear quadruple interactions to the magnetic structure in USb2 compound. The investigation were performed applying the so called band correlated LDA+U theory self consistently. The self consistent LDA+U calculations were gradually added to the performed generalized gradient approximation (GGA) including scalar relativistic spin orbit interactions in a second variation scheme. The result, which is in agreement with experiment, shows that the 5f-electrons have the tendency to be hybridized with the conduction electrons in the ferromagnetic uranium planes.
We consider the interaction between acceptor pairs in doped semiconductors in the limit of large inter-acceptor separation relevant for low doping densities. Modeling individual acceptors via the spherical model of Baldereschi and Lipari, we calculate matrix elements of the quadrupole tensor between the four degenerate ground states and show that the acceptor has a nonzero quadrupole moment. As a result, the dominant contribution to the large-separation acceptor-acceptor interaction comes from direct (charge-density) terms rather than exchange terms. The quadrupole is the leading nonzero moment, so the electric quadrupole-quadrupole interaction dominates for large separation. We calculate the matrix elements of the quadrupole-quadrupole interaction Hamiltonian in a product-state basis and diagonalize, obtaining a closed-form expression for the energies and degeneracies of the sixteen-state energy spectrum. All dependence on material parameters enters via an overall prefactor, resulting in surprisingly simple and universal results. This simplicity is due, in part, to a mathematical happenstance, the nontrivial vanishing of a particular Wigner 6-j symbol. Results are relevant to the control of two-qubit interactions in quantum computing implementations based on acceptor spins, as well as calculations of the thermodynamic properties of insulating p-type semiconductors.
Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. However, shrinkage and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.
We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd$^{3+}$:Y$_2$SiO$_5$. The lifetime is measured as a function of magnetic field strength and orientation, temperature and Nd$^{3+}$ doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundreds of mT, and then finally decays rapidly for high field strengths. This behaviour can be modelled with a relaxation rate dominated by Nd$^{3+}$-Nd$^{3+}$ cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd$^{3+}$ ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3~K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا