Do you want to publish a course? Click here

Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

127   0   0.0 ( 0 )
 Added by Iair Arcavi Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Every supernova hitherto observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95-130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.



rate research

Read More

In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and an later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.
The interaction of a supernova with a circumstellar medium (CSM) can dramatically increase the emitted luminosity by converting kinetic energy to thermal energy. In superluminous supernovae (SLSNe) of Type IIn -- named for narrow hydrogen lines in their spectra -- the integrated emission can reach $sim 10^{51}$ erg, attainable by thermalising most of the kinetic energy of a conventional SN. A few transients in the centres of active galaxies have shown similar spectra and even larger energies, but are difficult to distinguish from accretion onto the supermassive black hole. Here we present a new event, SN2016aps, offset from the centre of a low-mass galaxy, that radiated $gtrsim 5 times 10^{51}$ erg, necessitating a hyper-energetic supernova explosion. We find a total (SN ejecta $+$ CSM) mass likely exceeding 50-100 M$_odot$, with energy $gtrsim 10^{52}$ erg, consistent with some models of pair-instability supernovae (PISNe) or pulsational PISNe -- theoretically-predicted thermonuclear explosions from helium cores $>50$ M$_odot$. Independent of the explosion mechanism, this event demonstrates the existence of extremely energetic stellar explosions, detectable at very high redshifts, and provides insight into dense CSM formation in the most massive stars.
We present BVRI photometry and optical spectroscopy of SN 2005bf near light maximum. The maximum phase is broad and occurred around 2005 May 7, about forty days after the shock breakout. SN 2005bf has a peak bolometric magnitude M_{bol}=-18.0pm 0.2: while this is not particularly bright, it occurred at an epoch significantly later than other SNe Ibc, indicating that the SN possibly ejected ~0.31 M_{sun} of 56Ni, which is more than the typical amount. The spectra of SN 2005bf around maximum are very similar to those of the Type Ib SNe 1999ex and 1984L about 25-35 days after explosion, displaying prominent He I, Fe II, Ca II H & K and the near-IR triplet P Cygni lines. Except for the strongest lines, He I absorptions are blueshifted by <~6500 km/s, and Fe II by ~7500-8000 km/s. No other SNe Ib have been reported to have their Fe II absorptions blueshifted more than their He I absorptions. Relatively weak H-alpha and very weak H-beta may also exist, blueshifted by ~15,000 km/s. We suggest that SN 2005bf was the explosion of a massive He star, possibly with a trace of a hydrogen envelope.
60 - P.A. Mazzali 2017
An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN2004aw is shown not to be ``broad-lined, contrary to previous claims, but rather a ``fast-lined SN Ic. The spectral resemblance to the narrow-lined Type Ic SN1994I, combined with the strong nebular [O I] emission and the broad light curve, point to a moderately energetic explosion of a massive C+O star. The ejected 56Ni mass is ~0.2 Msun. The ejecta mass as constrained by the models is ~3-5 Msun, while the kinetic energy is estimated as KE ~3-6 e51 ergs. The ratio KE/Mej, the specific energy which influences the shape of the spectrum, is therefore ~1. The corresponding zero-age main-sequence mass of the progenitor star may have been ~23-28 Msun. Tests show that a flatter outer density structure may have caused a broad-lined spectrum at epochs before those observed without affecting the later epochs when data are available, implying that our estimate of KE is a lower limit. SN2004aw may have been powered by either a collapsar or a magnetar, both of which have been proposed for gamma-ray burst-supernovae. Evidence for this is seen in the innermost layers, which appear to be highly aspherical as suggested by the nebular line profiles. However, any engine was not extremely powerful, as the outer ejecta are more consistent with a spherical explosion and no gamma-ray burst was detected in coincidence with SN2004aw.
Spectroscopic detection of narrow emission lines traces the presence of circumstellar mass distributions around massive stars exploding as core-collapse supernovae. Transient emission lines disappearing shortly after the supernova explosion suggest that the spatial extent of such material is compact, and hence imply an increased mass loss shortly prior to explosion. Here, we present a systematic survey for such transient emission lines (Flash Spectroscopy) among Type II supernovae detected in the first year of the Zwicky Transient Facility (ZTF) survey. We find that at least six out of ten events for which a spectrum was obtained within two days of estimated explosion time show evidence for such transient flash lines. Our measured flash event fraction ($>30%$ at $95%$ confidence level) indicates that elevated mass loss is a common process occurring in massive stars that are about to explode as supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا