Do you want to publish a course? Click here

Accuracy of fission dynamics within the time dependent superfluid local density approximation

87   0   0.0 ( 0 )
 Added by Janina Grineviciute
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We discuss properties of the method based on time dependent superfluid local density approximation (TDSLDA) within an application to induced fission of 240Pu and surrounding nuclei. Various issues related to accuracy of time evolution and the determination of the properties of fission fragments are discussed.



rate research

Read More

Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the barrier explore large amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way, and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission, or the corresponding adiabatic approaches.
Nuclear implementation of the density functional theory (DFT) is at present the only microscopic framework applicable to the whole nuclear landscape. The extension of DFT to superfluid systems in the spirit of the Kohn-Sham approach, the superfluid local density approximation (SLDA) and its extension to time-dependent situations, time-dependent superfluid local density approximation (TDSLDA), have been extensively used to describe various static and dynamical problems in nuclear physics, neutron star crust, and cold atom systems. In this paper, we present the codes that solve the static and time-dependent SLDA equations in three-dimensional coordinate space without any symmetry restriction. These codes are fully parallelized with the message passing interface (MPI) library and take advantage of graphic processing units (GPU) for accelerating execution. The dynamic codes have checkpoint/restart capabilities and for initial conditions one can use any generalized Slater determinant type of wave function. The code can describe a large number of physical problems: nuclear fission, collisions of heavy ions, the interaction of quantized vortices with nuclei in the nuclear star crust, excitation of superfluid fermion systems by time dependent external fields, quantum shock waves, domain wall generation and propagation, the dynamics of the Anderson-Bogoliubov-Higgs mode, dynamics of fragmented condensates, vortex rings dynamics, generation and dynamics of quantized vortices, their crossing and recombinations and the incipient phases of quantum turbulence.
The dynamic response of asymmetric nuclear matter is studied by using a Time-Dependent Local Isospin Density (TDLIDA) approximation approach. Calculations are based on a local density energy functional derived by an Auxiliary Field Diffusion Monte Carlo (AFDMC) calculation of bulk nuclear matter. Three types of excited states emerge: collective states, a continuum of quasi-particle-quasi-hole excitations and unstable solutions. These states are analyzed and discussed for different values of the nuclear density $rho$ and isospin asymmetry $xi=(N-Z)/A$. An analytical expression of the compressibility as a function of $rho$ and $xi$ is derived which show explicitly an instability of the neutron matter around $rhosimeq 0.09 fm^{-3}$ when a small fraction of protons is added to the system.
Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا