Do you want to publish a course? Click here

Very low-luminosity galaxies in the early universe have observed sizes similar to single star cluster complexes

57   0   0.0 ( 0 )
 Added by Rychard J. Bouwens
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the sizes and luminosities of 307 faint z=6-8 sources revealed by the Hubble Frontier Fields (HFF) program with sources in the nearby universe. Making use of the latest lensing models and data from the first four HFF clusters with an extensive suite of public lens models, we measure both the sizes and luminosities for 153 z~6, 101 z~7, and 53 z~8 galaxies. The sizes range over more than a decade from ~500 to <50 pc. Extremely small sizes are inferred for many of our lowest luminosity sources, reaching individual sizes as small as 10-30 pc (the smallest is 11(-6)(+28) pc). The uncertainty in these measures ranges from 80 pc for the largest sources to typically about 20 pc for the smallest. Such sizes are smaller than extrapolations of the size-luminosity relation, and expectations for the completeness of our faint samples, suggesting a likely break in the size-luminosity relation at ~-17 mag with size proportional to L**(0.50(-0.11)(+0.10)). The sizes and luminosities of the lowest-luminosity sources are similar to those of single star cluster complexes like 30 Doradus in the lower-redshift universe and -- in a few cases -- super star clusters. Remarkably, our identification of these compact, faint star-forming sources in the z~6-8 universe also allow us to set upper limits on the proto-globular cluster LF at z~6. Comparisons with recent models allow us to rule out (with some caveats) some scenarios for proto-globular cluster formation and set useful upper limits on other less extreme ones. Our results suggest we may be very close to discovering a bona-fide population of forming globular clusters at high redshift.



rate research

Read More

We compare the sizes and luminosities of faint $z=6$-8 galaxies magnified by the Hubble Frontier Fields (HFF) clusters with star-forming regions, as well as more evolved objects, in the nearby universe. Our high-redshift comparison sample includes 333 z=6-8 galaxies, for which size measurements were made as part of a companion study where lensing magnifications were estimated from various public models. Accurate size measurements for these sources are complicated by the lens model uncertainties, but other results and arguments suggest that faint galaxies are small, as discussed in a companion study. The measured sizes for sources in our comparison sample range from <50 pc to ~500 pc. For many of the lowest luminosity sources, extremely small sizes are inferred, reaching individual sizes as small as 10-30 pc, with several sources in the 10-15 pc range with our conservative magnification limits. The sizes and luminosities are similar to those of single star cluster complexes like 30 Doradus in the lower-redshift universe and -- in a few cases -- super star clusters. The identification of these compact, faint star-forming sources in the z~6-8 universe also allows us to set upper limits on the proto-globular cluster LF at z~6. By comparisons of the counts and sizes with recent models, we rule out (with some caveats) proto-globular cluster formation scenarios favoring substantial (xi=10) post-formation mass loss and set useful upper limits on others. Our size results suggest we may be very close to discovering a bona-fide population of forming globular clusters at high redshift.
51 - Soh Ikarashi 2017
We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave ($lambda_{rm obs}=1100 mu$m) sizes of 69 ALMA-identified SMGs, selected with $geq10$$sigma$ confidence on ALMA images ($F_{rm 1100 mu m}=1.7$--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at $z=1$--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median $R_{rm c,e} = 1.6^{+0.34}_{-0.21}$ and 1.5$^{+0.93}_{-0.24}$ kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median $R_{rm c,e}=1.0^{+0.20}_{-0.20}$ kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.
We present a photometric study of the globular cluster systems of the Fornax cluster galaxies NGC 1374, NGC 1379, and NGC 1387. The data consists of images from the wide-field MOSAIC Imager of the CTIO 4-m telescope, obtained with Washington C and Kron-Cousins R filters. The images cover a field of 36 x 36 arcmin, corresponding to 200 x 200 kpc at the Fornax distance. Two of the galaxies, NGC 1374 and NGC 1379, are low-luminosity ellipticals while NGC 1387 is a low-luminosity lenticular. Their cluster systems are still embedded in the cluster system of NGC 1399. Therefore the use of a large field is crucial and some differences to previous work can be explained by this. The colour distributions of all globular cluster systems are bimodal. NGC 1387 presents a particularly distinct separation between red and blue clusters and an overproportionally large population of red clusters. The radial distribution is different for blue and red clusters, red clusters being more concentrated towards the respective galaxies. The different colour and radial distributions point to the existence of two globular cluster subpopulations in these galaxies. Specific frequencies are in the range S_N= 1.4-2.4, smaller than the typical values for elliptical galaxies. These galaxies might have suffered tidal stripping of blue globular clusters by NGC 1399.
165 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, {tt DeepScan}, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree$^2$ portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with $26.0leqlangle mu_{e}rangleleq28.5$ and $19leq m_{g}leq21$, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of $10^{6.3pm0.5} M_{odot}$ assuming cluster membership. After using {tt ProFit} to fit Sersic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا