Do you want to publish a course? Click here

Very compact millimeter sizes for composite star-forming/AGN submillimeter galaxies

52   0   0.0 ( 0 )
 Added by Soh Ikarashi
 Publication date 2017
  fields Physics
and research's language is English
 Authors Soh Ikarashi




Ask ChatGPT about the research

We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave ($lambda_{rm obs}=1100 mu$m) sizes of 69 ALMA-identified SMGs, selected with $geq10$$sigma$ confidence on ALMA images ($F_{rm 1100 mu m}=1.7$--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at $z=1$--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median $R_{rm c,e} = 1.6^{+0.34}_{-0.21}$ and 1.5$^{+0.93}_{-0.24}$ kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median $R_{rm c,e}=1.0^{+0.20}_{-0.20}$ kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.



rate research

Read More

We use the data for the Hbeta emission-line, far-ultraviolet (FUV) and mid-infrared 22 micron continuum luminosities to estimate star formation rates <SFR> averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking <SFR> and the star formation rate SFR_0 derived from the Hbeta luminosity at zero starburst age is found to be 0.04. We compare <SFR>s with some commonly used SFRs which are derived adopting a continuous star formation during a period of ~100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for <SFR> determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of ~2 of the <SFR> averaged over the lifetime of the bursting compact galaxy.
We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
We present rest-frame far-infrared (FIR) and optical size measurements of AGN hosts and star-forming galaxies in the COSMOS field, enabled by high-resolution ALMA/1 mm (0.1 arcsec - 0.4 arcsec) and HST/F814W imaging (~ 0.1 arcsec). Our sample includes 27 galaxies at z<2.5, classified as infrared-selected AGN (3 sources), X-ray selected AGN (4 sources), and non-AGN star-forming galaxies (20 sources), for which high-resolution Band 6/7 ALMA images are available at 1 mm from our own observing program as well as archival observations. The sizes and SFR surface densities measured from both ALMA/1 mm and HST/F814W images show that obscured AGN host galaxies are more compact than non-AGN star-forming galaxies at similar redshift and stellar mass. This result suggests that the obscured accretion phase may be related to galaxies experiencing a compaction of their gaseous component, which could be associated with enhanced central star formation before a subsequent quenching driving the formation of compact passive galaxies. Moreover, most of the detected and stacked rest-frame FIR sizes of AGNs in our sample are similar or more compact than their rest-frame optical sizes, which is consistent with recent results of ALMA detected sources. This might be explained by the fact that the dusty starbursts take place in the compact regions, and suggests that the star formation mechanisms in the compact regions of AGN hosts are similar to those observed in star-forming galaxies observed with ALMA.
We investigate the differences in the stellar population properties, the structure, and the environment between massive compact star-forming galaxies (cSFGs) with or without active galactic nucleus (AGN) at $2<z<3$ in the five 3D-HST/CANDELS fields. In a sample of 221 massive cSFGs, we constitute the most complete AGN census so far, identifying 66 AGNs by the X-ray detection, the mid-infrared color criterion, and/or the SED fitting, while the rest (155) are non-AGNs. Further dividing these cSFGs into two redshift bins, i.e., $2<z<2.5$ and $2.5 leq z<3$, we find that in each redshift bin the cSFGs with AGNs have similar distributions of the stellar mass, the specific star formation rate, and the ratio of $L_{rm IR}$ to $L_{rm UV}$ to those without AGNs. After having performed a two-dimensional surface brightness modeling for those cSFGs with X-ray-detected AGNs (37) to correct for the influence of the central point-like X-ray AGN on measuring the structural parameters of its host galaxy, we find that in each redshift bin the cSFGs with AGNs have comparable distributions of all concerned structural parameters, i.e., the Sersic index, the 20%-light radius, the Gini coefficient, and the concentration index, to those without AGNs. With a gradual consumption of available gas and dust, the structure of cSFGs, indicated by the above structural parameters, seem to be slightly more concentrated with decreasing redshift. At $2<z<3$, the similar environment between cSFGs with and without AGNs suggests that their AGN activities are potentially triggered by internal secular processes, such as gravitational instabilities or/and dynamical friction.
We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4$-$344318 and MM J154132.7$-$350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 $mu$m and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are $z_{rm photo} simeq$ 4-5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-$z$ ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at $S_{rm 1.1mm} ge 25$ mJy, combined with other two 1.1-mm brightest sources, are $0.70 ^{+0.56}_{-0.34}$ deg$^{-2}$, which is consistent with a model prediction that accounts for flux magnification due to strong gravitational lensing. Unexpectedly, a $z > 3$ SMG and a Galactic dense starless core (e.g., a first hydrostatic core) could be similar in the mid-infrared to millimeter spectral energy distributions and spatial structures at least at $gtrsim 1$. This indicates that it is necessary to distinguish the two possibilities by means of broad band photometry from the optical to centimeter and spectroscopy to determine the redshift, when a compact object is identified toward Galactic star-forming regions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا