No Arabic abstract
A main goal of NASAs Kepler Mission is to establish the frequency of potentially habitable Earth-size planets (eta Earth). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from the analysis of the flux centroids of the Kepler observations themselves. While many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a different star than the target along the same line of sight. If that were the case, a planet that appears small enough to be rocky may actually be considerably larger and therefore less interesting from the point of view of habitability. We take this into consideration here, and are able to validate 15 of our candidates at a 99.73% (3 sigma) significance level or higher, and the other three at slightly lower confidence. We characterize the GKM host stars using available ground-based observations and provide updated parameters for the planets, with sizes between 0.8 and 2.9 Earth radii. Seven of them (KOI-0438.02, 0463.01, 2418.01, 2626.01, 3282.01, 4036.01, and 5856.01) have a better than 50% chance of being smaller than 2 Earth radii and being in the habitable zone of their host stars.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrance rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Data Release 24 Q1-Q17 data vetting process. This work was undertaken as part of the Kepler Habitable Zone Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the Data Release 25 stellar properties and confirmed planet properties to provide robust stellar parameters and candidate dispositions. We also include false positive probabilities recently calculated by Morton et al. (2016) for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems.
Kepler-62f is the first exoplanet small enough to plausibly have a rocky composition orbiting within the habitable zone (HZ) discovered by the Kepler Mission. The planet is 1.4 times the size of the Earth and has an orbital period of 267 days. At the time of its discovery, it had the longest period of any small planet in the habitable zone of a multi-planet system. Because of its long period, only four transits were observed during Keplers interval of observations. It was initially missed by the Kepler pipeline, but the first three transits were identified by an independent search by Eric Agol, and it was identified as a planet candidate in subsequent Kepler catalogs. However in the latest catalog of exoplanets (Thompson et al., 2018), it is labeled as a false positive. Recent exoplanet catalogues have evolved from subjective classification to automatic classifications of planet candidates by algorithms (such as `Robovetter). While exceptionally useful for producing a uniform catalogue, these algorithms sometimes misclassify planet candidates as a false positive, as is the case of Kepler-62f. In particularly valuable cases, i.e., when a small planet has been found orbiting in the habitable zone (HZ), it is important to conduct comprehensive analyses of the data and classification protocols to provide the best estimate of the true status of the detection. In this paper we conduct such analyses and show that Kepler-62f is a true planet and not a false positive. The table of stellar and planet properties has been updated based on GAIA results.
We present the results of an independent search of all ~200,000 stars observed over the four year Kepler mission (Q1-Q17) for multiplanet systems, using a three-transit minimum detection criteria to search orbital periods up to hundreds of days. We incorporate both automated and manual triage, and provide estimates of the completeness and reliability of our vetting pipeline. Our search returned 17 planet candidates (PCs) in addition to thousands of known Kepler Objects of Interest (KOIs), with a 98.8% recovery rate of already confirmed planets. We highlight the discovery of one candidate, KIC-7340288 b, that is both rocky (radius < 1.6 $R_{bigoplus}$) and in the Habitable Zone (insolation between 0.25 and 2.2 times the Earths insolation). Another candidate is an addition to the already known KOI-4509 system. We also present adaptive optics imaging follow-up for six of our new PCs, two of which reveal a line-of-sight stellar companion within 4.
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least three transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between Neptune to Jupiter. These detections nearly double the number of gas giant planet candidates orbiting at habitable zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd-sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.