We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.
We numerically simulate the creation process of two-dimensional skyrmionic excitations in antiferromagnetic spin-1 Bose--Einstein condensates by solving the full three-dimensional dynamics of the system from the Gross--Pitaevskii equation. Our simulations reproduce quantitatively the experimental results of [Choi et al., Phys. Rev. Lett. 108, 035301 (2012)] without any fitting parameters. Furthermore, we examine the stability of the skyrmion by computing the temporal evolution of the condensate in a harmonic potential. The presence of both the quadratic Zeeman effect and dissipation in the simulations is vital for reproducing the experimentally observed decay time.
In this work we present a systematic study of the three-dimensional extension of the ring dark soliton examining its existence, stability, and dynamics in isotropic harmonically trapped Bose-Einstein condensates. Detuning the chemical potential from the linear limit, the ring dark soliton becomes unstable immediately, but can be fully stabilized by an external cylindrical potential. The ring has a large number of unstable modes which are analyzed through spectral stability analysis. Furthermore, a few typical destabilization dynamical scenarios are revealed with a number of interesting vortical structures emerging such as the two or four coaxial parallel vortex rings. In the process of considering the stability of the structure, we also develop a modified version of the degenerate perturbation theory method for characterizing the spectra of the coherent structure. This semi-analytical method can be reliably applied to any soliton with a linear limit to explore its spectral properties near this limit. The good agreement of the resulting spectrum is illustrated via a comparison with the full numerical Bogolyubov-de Gennes spectrum. The application of the method to the two-component ring dark-bright soliton is also discussed.
We studied spin-dependent two-body inelastic collisions in F=2 87Rb Bose-Einstein condensates both experimentally and theoretically. The 87Rb condensates were confined in an optical trap and selectively prepared in various spin states in the F=2 manifold at a magnetic field of 3.0 G. Measured atom loss rates are found to depend on spin states of colliding atoms. We measured two fundamental loss coefficients for two-body inelastic collisions with the total spin of 0 and 2; the coefficients determine loss rates for all the spin pairs. The experimental results for mixtures of all the spin combinations are in good agreement with numerical solutions of the Gross-Pitaevskii equations that include the effect of a magnetic field gradient.
Quantum vortex reconnections can be considered as a fundamental unit of interaction in complex turbulent quantum gases. Understanding the dynamics of single vortex reconnections as elementary events is an essential precursor to the explanation of the emergent properties of turbulent quantum gases. It is thought that a lone pair of quantum vortex lines will inevitably interact given a sufficiently long time. This paper investigates aspects of reconnections of quantum vortex pairs imprinted in a Bose-Einstein condensate held in an anisotropic three dimensional trap using an exact many-body treatment. In particular the impact of the interaction strength and the trap anisotropy in the reconnection time is studied. It is found that interaction strength has no effect on reconnection time over short time scales and that the trap anisotropy can cause the edge of the condensate to interfere with the reconnection process. It is also found that the initially coherent system fragments very slowly, even for relatively large interaction strength, and therefore the system likes to stay condensed during the reconnections.
We report on the creation of three-vortex clusters in a $^{87}Rb$ Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation, and as a vortex-antivortex-vortex cluster. The linear configurations are very likely the first experimental signatures of predicted stationary vortex clusters.