No Arabic abstract
It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands are (quasi-)isotropic and anisotropic respectively. After calibrating the anisotropy with ab initio simulations, the resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain boundary reflection coefficient can be identified for textured Ru.
Quantum Hall stripe phases near half-integer filling factors $ u ge 9/2$ were predicted by Hartree-Fock (HF) theory and confirmed by discoveries of giant resistance anisotropies in high-mobility two-dimensional electron gases. A theory of such anisotropy was proposed by MacDonald and Fisher, although they used parameters whose dependencies on the filling factor, electron density, and mobility remained unspecified. Here, we fill this void by calculating the hard-to-easy resistivity ratio as a function of these three variables. Quantitative comparison with experiment yields very good agreement which we view as evidence for the plain vanilla smectic stripe HF phases.
In this paper we solve the Cattaneo-Vernotte Equation for a periodic heterostructure made of alternate layers of different materials. The solutions describe thermal waves traveling in a periodic system, and it allows us to introduce the concept of thermal crystals. We show that the dispersion relation shows the characteristics of a band-structure, however the corresponding Bloch wave vector is always complex corresponding to pseudo-bands, unlike what happens in photonic or acoustic crystals. In this context, we also discuss the use of the Floquet-Bloch theorem for thermal waves. The case of finite layered structures is also analyzed showing the possibility of changing the temperature and heat flux by introducing defects opening the possibility of thermal management through the pseudo-band structure.
A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.
The Zeeman splitting of the conduction band in the HgTe quantum wells both with normal and inverted spectrum has been studied experimentally in a wide electron density range. The simultaneous analysis of the SdH oscillations in low magnetic fields at different tilt angles and of the shape of the oscillations in moderate magnetic fields gives a possibility to find the ratio of the Zeeman splitting to the orbital one and anisotropy of g-factor. It is shown that the ratios of the Zeeman splitting to the orbital one are close to each other for both types of structures, with a normal and inverted spectrum and they are close enough to the values calculated within kP method. In contrast, the values of g-factor anisotropy in the structures with normal and inverted spectra is strongly different and for both cases differs significantly from the calculated ones. We believe that such disagreement with calculations is a result of the interface inversion asymmetry in the HgTe quantum well, which is not taken into account in the kP calculations.
: n-type Ge/SiGe asymmetric-coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through the comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune by design the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are the promising starting point towards a working electrically pumped light-emitting device.