Do you want to publish a course? Click here

Zeeman splitting of conduction band in HgTe quantum wells near the Dirac point

65   0   0.0 ( 0 )
 Added by Andrey Sherstobitov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Zeeman splitting of the conduction band in the HgTe quantum wells both with normal and inverted spectrum has been studied experimentally in a wide electron density range. The simultaneous analysis of the SdH oscillations in low magnetic fields at different tilt angles and of the shape of the oscillations in moderate magnetic fields gives a possibility to find the ratio of the Zeeman splitting to the orbital one and anisotropy of g-factor. It is shown that the ratios of the Zeeman splitting to the orbital one are close to each other for both types of structures, with a normal and inverted spectrum and they are close enough to the values calculated within kP method. In contrast, the values of g-factor anisotropy in the structures with normal and inverted spectra is strongly different and for both cases differs significantly from the calculated ones. We believe that such disagreement with calculations is a result of the interface inversion asymmetry in the HgTe quantum well, which is not taken into account in the kP calculations.



rate research

Read More

Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov-de Haas oscillations and Hall effect over a wide range of electron and hole densities gives surprising result: the top of the valence band is strongly split by spin-orbit interaction while the splitting of the conduction band is absent, within experimental accuracy. Astonishingly, but such a ratio of the splitting values is observed as for structures with normal spectrum so for structures with inverted one. These results do not consistent with the results of kP calculations, in which the smooth electric filed across the quantum well is only reckoned in. It is shown that taking into account the asymmetry of the quantum well interfaces within a tight-binding method gives reasonable agreement with the experimental data.
Spin-orbit splitting of conduction band in HgTe quantum wells was studied experimentally. In order to recognize the role of different mechanisms, we carried out detailed measurements of the Shubnikov-de Haas oscillations in gated structures with a quantum well widths from $8$ to $18$ nm over a wide range of electron density. With increasing electron density controlled by the gate voltage, splitting of the maximum of the Fourier spectrum $f_0$ into two components $f_1$ and $f_2$ and the appearance of the low-frequency component $f_3$ was observed. Analysis of these results shows that the components $f_1$ and $f_2$ give the electron densities $n_1$ and $n_2$ in spin-orbit split subbands while the $f_3$ component results from magneto-intersubband oscillations so that $f_3=f_1 - f_2$. Comparison of these data with results of self-consistent calculations carried out within the framework of four-band emph{kP}-model shows that a main contribution to spin-orbit splitting comes from the Bychkov-Rashba effect. Contribution of the interface inversion asymmetry to the splitting of the conduction band turns out to be four-to-five times less than that for the valence band in the same structures.
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H1. The difference dN_s in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of dN_s are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrodinger equations with eight-band kp Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of $H1$ states hybridized with the heavy-hole band.
Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the numerical solution of the two-particle Schroedinger equation, taking into account the Coulomb interaction and valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation of the g-factor convincingly follows the dependencies obtained in the experiments.
The realization of quantum spin Hall (QSH) effect in HgTe quantum wells (QWs) is considered a milestone in the discovery of topological insulators. The QSH edge states are predicted to allow current to flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction of QSH theory that remains to be experimentally verified is the breakdown of the edge conduction under broken time reversal symmetry (TRS). Here we first establish a rigorous framework for understanding the magnetic field dependence of electrostatically gated QSH devices. We then report unexpected edge conduction under broken TRS, using a unique cryogenic microwave impedance microscopy (MIM), on a 7.5 nm HgTe QW device with an inverted band structure. At zero magnetic field and low carrier densities, clear edge conduction is observed in the local conductivity profile of this device but not in the 5.5 nm control device whose band structure is trivial. Surprisingly, the edge conduction in the 7.5 nm device persists up to 9 T with little effect from the magnetic field. This indicates physics beyond simple QSH models, possibly associated with material- specific properties, other symmetry protection and/or electron-electron interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا