Do you want to publish a course? Click here

Unifying different interpretations of the nonlinear response in glass-forming liquids

414   0   0.0 ( 0 )
 Added by Paramesh Gadige
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work aims at reconsidering several interpretations coexisting in the recent literature concerning non-linear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, both for their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these non-linear susceptibilities. We show that the framework proposed by two of us [BB, Phys. Rev. B 72, 064204 (2005)], where the growth of non-linear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models, and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments which should deepen our understanding of glasses.



rate research

Read More

A recently published analytical model, describing and predicting elasticity, viscosity, and fragility of metallic melts, is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular-weight liquids, polymers, plastic crystals, and even ionic glass formers. The model is based on the power-law exponent lambda representing the steepness parameter of the repulsive part of the inter-atomic or -molecular potential and the thermal-expansion parameter alpha_T determined by the attractive anharmonic part of the effective interaction. It allows fitting the typical super-Arrhenius temperature variation of the viscosity or dielectric relaxation time for various classes of glass-forming matter, over many decades. We discuss the relation of the model parameters found for all these different glass-forming systems to the fragility parameter m and detect a correlation of lambda and m for the non-metallic glass formers, in accord with the model predictions. Within the framework of this model, thus the fragility of glass formers can be traced back to microscopic model parameters characterizing the intermolecular interactions.
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coarse grained observables and decomposing the fluctuations of these observables into transverse components, which are associated with the postulated time-fluctuation soft modes, and a longitudinal component, which represents the rest of the fluctuations. Our test is performed on data obtained in simulations of four models of structural glasses. As the hypothesis predicts, we find that the time reparametrization fluctuations become increasingly dominant as temperature is lowered and timescales are increased. More specifically, the ratio between the strengths of the transverse fluctuations and the longitudinal fluctuations grows as a function of the dynamical susceptibility, chi 4, which represents the strength of the dynamical heterogeneity; and the correlation volumes for the transverse fluctuations are approximately proportional to those for the dynamical heterogeneity, while the correlation volumes for the longitudinal fluctuations remain small and approximately constant.
If quenched fast enough, a liquid is able to avoid crystallization and will remain in a metastable supercooled state down to the glass transition, with an important increase in viscosity upon further cooling. There are important differences in the way liquids relax as they approach the glass transition, rapid or slow variation in dynamic quantities under moderate temperature changes, and a simple means to quantify such variations is provided by the concept of fragility. Here, we report molecular dynamics simulations of a typical network-forming glass, Ge-Se, and find that the relaxation behaviour of the supercooled liquid is strongly correlated to the variation of rigidity with temperature and the spatial distribution of the corresponding topological constraints which, ultimately connect to fragility minima. This permits extending the fragility concept to aspects of topology/rigidity, and to the degree of homogeneity of the atomic-sale interactions for a variety of structural glasses.
67 - Bo Li , Kai Lou , Walter Kob 2019
The glass is a disordered solid that processes distinct dynamical and elastic properties compared with crystal. How heterogeneous glassy materials can be and to what extent dynamics is encoded with structure and elasticity are long-standing puzzles in glass science. In this experiment, we probed the responses of binary colloidal glasses towards the excitations induced by highly focused laser pulses. We observed very similar excitation patterns when the laser was repeated in the linear region; directly proving that the dynamical heterogeneity is strongly encoded with structure. In the non-linear region, we identified a non-monotonic dynamical length scale as a function of area fraction, resulting from the non-monotonic coupling of momentum transfer in radial and orthogonal directions. Surprisingly, the excitation size and radius of gyration conformed to a universal scaling relation that covered both linear and non-linear regions. Our experiments offered a new strategy of actively probing the response of glassy materials on the microscopic level.
Atomic correlations in a simple liquid in steady-state flow under shear stress were studied by molecular dynamics simulation. The local atomic level strain was determined through the anisotropic pair-density function (PDF). The atomic level strain has a limited spatial extension whose range is dependent on the strain rate and extrapolates to zero at the critical strain rate. A failure event is identified with altering the local topology of atomic connectivity by exchanging bonds among neighboring atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا