No Arabic abstract
The recent detection of gravitational waves and electromagnetic counterparts from the double neutron star merger event GW+EM170817, supports the standard paradigm of short gamma-ray bursts (SGRBs) and kilonovae/macronovae. It is important to reveal the nature of the compact remnant left after the merger, either a black hole or neutron star, and their physical link to the origin of the long-lasting emission observed in SGRBs. The diversity of the merger remnants may also lead to different kinds of transients that can be detected in future. Here we study the high-energy emission from the long-lasting central engine left after the coalescence, under certain assumptions. In particular, we consider the X-ray emission from a remnant disk and the non-thermal nebular emission from disk-driven outflows or pulsar winds. We demonstrate that late-time X-ray and high-frequency radio emission can provide useful constraints on properties of the hidden compact remnants and their connections to long-lasting SGRB emission, and we discuss the detectability of nearby merger events through late-time observations at $sim30-100$ d after the coalescence. We also investigate the GeV-TeV gamma-ray emission that occurs in the presence of long-lasting central engines, and show the importance of external inverse-Compton radiation due to up-scattering of X-ray photons by relativistic electrons in the jet. We also search for high-energy gamma-rays from GW170817 in the Fermi-LAT data, and report upper limits on such long-lasting emission. Finally, we consider the implications of GW+EM170817 and discuss the constraints placed by X-ray and high-frequency radio observations.
Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at $>5sigma$ with bimodal distributions of luminosity and duration, i.e., extended (with timescale $lesssim10^3$ s) and plateau emission (with timescale $gtrsim10^3$ s), which are likely the central engine activities but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has $sim0.01-1$ times of that energy. A half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electromagnetic emission are in tension with the expectations from standard neutron-star merger models. Although the large measured ejecta mass is potentially explained by a progenitor system that is asymmetric in terms of the stellar component masses, i.e. with a mass ratio $q$ of 0.7-0.8, the known Galactic population of merging double neutron star (DNS) systems (i.e. those that will coalesce within billions of years or less) has, until now, only consisted of nearly equal-mass ($q > 0.9$) binaries. PSR J1913+1102 is a DNS system in a 5-hour, low-eccentricity ($e = 0.09$) orbit, implying an orbital separation of 1.8 solar radii, with the two neutron stars predicted to coalesce in 470 million years due to gravitational-wave emission. Here we report that the masses of the two neutron stars, as measured by a dedicated pulsar timing campaign, are $1.62 pm 0.03$ and $1.27 pm 0.03$ solar masses for the pulsar and companion neutron star, respectively; with a measured mass ratio $q = 0.78 pm 0.03$, it is the most asymmetric DNS among known merging systems. Based on this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30% (90% confidence) of the total population of merging DNS binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event.
Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by the same equation of state, and their Lambdas are highly correlated through their masses even if the equation of state is unknown. If, however, a strong phase transition exists between the central densities of the two stars, so that the more massive star has a phase transition and the least massive star does not, this correlation will be weakened. In all cases, a minimum Lambda for each neutron star mass is imposed by causality, and a less conservative limit is imposed by the unitary gas constraint, both of which we compute. In order to make the best use of gravitational wave data from mergers, it is important to include the correlations relating the Lambdas and the masses as well as lower limits to the Lambdas as a function of mass. Focusing on the case without strong phase transitions, and for mergers where the chirp mass M_chirp<1.4M_sun, which is the case for all observed double neutron star systems where a total mass has been accurately measured, we show that the dimensionless Lambdas satisfy Lambda_1/Lambda_2= q^6, where q=M_2/M_1 is the binary mass ratio; $M$ is mass of each star, respectively. Moreover, they are bounded by q^{n_-}>Lambda_1/Lambda_2> q^{n_{0+}+qn_{1+}}, where n_-<n_{0+}+qn_{1+}; the parameters depend only on M_chirp, which is accurately determined from the gravitational-wave signal. We also provide analytic expressions for the wider bounds that exist in the case of a strong phase transition. We argue that bounded ranges for Lambda_1/Lambda_2, tuned to M_chirp, together with lower bounds to Lambda(M), will be more useful in gravitational waveform modeling than other suggested approaches.
Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on binary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed sub-population of spinning, merging binary black holes, but also lead to long gamma-ray bursts at the time of black-hole formation, with rates matching the empirical ones. We find that $approx$10% of the GWTC-2 reported binary black holes had a long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of $approx$85% and $approx$60%, respectively, being among them.
The gravitational-wave detectors LIGO and Virgo together with their electromagnetic partner facilities have transformed the modus operandi in which we seek information about the Universe. The first ever-observed neutron-star merger---GW170817---confirmed the association of short gamma-ray bursts with neutron-star mergers and the production of heavy (r-process) elements. Based on recent theoretical and observational developments, I briefly present and discuss a conjecture, namely that compact accretion disks in both short and long gamma-ray bursts synthesize most of the heavy r-process elements in the Universe. The upcoming era of multi-messenger astronomy may allow us to verify or falsify this conjecture.