Do you want to publish a course? Click here

Real-Time Robust Finger Gaits Planning under Object Shape and Dynamics Uncertainties

169   0   0.0 ( 0 )
 Added by Yongxiang Fan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Dexterous manipulation has broad applications in assembly lines, warehouses and agriculture. To perform large-scale manipulation tasks for various objects, a multi-fingered robotic hand sometimes has to sequentially adjust its grasping gestures, i.e. the finger gaits, to address the workspace limits and guarantee the object stability. However, realizing finger gaits planning in dexterous manipulation is challenging due to the complicated grasp quality metrics, uncertainties on object shapes and dynamics (mass and moment of inertia), and unexpected slippage under uncertain contact dynamics. In this paper, a dual-stage optimization based planner is proposed to handle these challenges. In the first stage, a velocity-level finger gaits planner is introduced by combining object grasp quality with hand manipulability. The proposed finger gaits planner is computationally efficient and realizes finger gaiting without 3D model of the object. In the second stage, a robust manipulation controller using robust control and force optimization is proposed to address object dynamics uncertainties and external disturbances. The dual-stage planner is able to guarantee stability under unexpected slippage caused by uncertain contact dynamics. Moreover, it does not require velocity measurement or expensive 3D/6D tactile sensors. The proposed dual-stage optimization based planner is verified by simulations on Mujoco.



rate research

Read More

This paper explores the problem of autonomous, in-hand regrasping--the problem of moving from an initial grasp on an object to a desired grasp using the dexterity of a robots fingers. We propose a planner for this problem which alternates between finger gaiting, and in-grasp manipulation. Finger gaiting enables the robot to move a single finger to a new contact location on the object, while the remaining fingers stably hold the object. In-grasp manipulation moves the object to a new pose relative to the robots palm, while maintaining the contact locations between the hand and object. Given the objects geometry (as a mesh), the hands kinematic structure, and the initial and desired grasps, we plan a sequence of finger gaits and object reposing actions to reach the desired grasp without dropping the object. We propose an optimization based approach and report in-hand regrasping plans for 5 objects over 5 in-hand regrasp goals each. The plans generated by our planner are collision free and guarantee kinematic feasibility.
Grasp planning for multi-fingered hands is computationally expensive due to the joint-contact coupling, surface nonlinearities and high dimensionality, thus is generally not affordable for real-time implementations. Traditional planning methods by optimization, sampling or learning work well in planning for parallel grippers but remain challenging for multi-fingered hands. This paper proposes a strategy called finger splitting, to plan precision grasps for multi-fingered hands starting from optimal parallel grasps. The finger splitting is optimized by a dual-stage iterative optimization including a contact point optimization (CPO) and a palm pose optimization (PPO), to gradually split fingers and adjust both the contact points and the palm pose. The dual-stage optimization is able to consider both the object grasp quality and hand manipulability, address the nonlinearities and coupling, and achieve efficient convergence within one second. Simulation results demonstrate the effectiveness of the proposed approach. The simulation video is available at: http://me.berkeley.edu/%7Eyongxiangfan/IROS2018/fingersplit.html
This paper considers safe robot mission planning in uncertain dynamical environments. This problem arises in applications such as surveillance, emergency rescue, and autonomous driving. It is a challenging problem due to modeling and integrating dynamical uncertainties into a safe planning framework, and finding a solution in a computationally tractable way. In this work, we first develop a probabilistic model for dynamical uncertainties. Then, we provide a framework to generate a path that maximizes safety for complex missions by incorporating the uncertainty model. We also devise a Monte Carlo method to obtain a safe path efficiently. Finally, we evaluate the performance of our approach and compare it to potential alternatives in several case studies.
Motion planners for mobile robots in unknown environments face the challenge of simultaneously maintaining both robustness against unmodeled uncertainties and persistent feasibility of the trajectory-finding problem. That is, while dealing with uncertainties, a motion planner must update its trajectory, adapting to the newly revealed environment in real-time; failing to do so may involve unsafe circumstances. Many existing planning algorithms guarantee these by maintaining the clearance needed to perform an emergency brake, which is itself a robust and persistently feasible maneuver. However, such maneuvers are not applicable for systems in which braking is impossible or risky, such as fixed-wing aircraft. To that end, we propose a real-time robust planner that recursively guarantees persistent feasibility without any need of braking. The planner ensures robustness against bounded uncertainties and persistent feasibility by constructing a loop of sequentially composed funnels, starting from the receding horizon local trajectorys forward reachable set. We implement the proposed algorithm for a robotic car tracking a speed-fixed reference trajectory. The experiment results show that the proposed algorithm can be run at faster than 16 Hz, while successfully keeping the system away from entering any dead-end, to maintain safety and feasibility.
We present a new framework for motion planning that wraps around existing kinodynamic planners and guarantees recursive feasibility when operating in a priori unknown, static environments. Our approach makes strong guarantees about overall safety and collision avoidance by utilizing a robust controller derived from reachability analysis. We ensure that motion plans never exit the safe backward reachable set of the initial state, while safely exploring the space. This preserves the safety of the initial state, and guarantees that that we will eventually find the goal if it is possible to do so while exploring safely. We implement our framework in the Robot Operating System (ROS) software environment and demonstrate it in a real-time simulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا