Do you want to publish a course? Click here

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

163   0   0.0 ( 0 )
 Added by Tian Xie
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with $10^4$ data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.



rate research

Read More

Thanks to rapidly evolving sequencing techniques, the amount of genomic data at our disposal is growing increasingly large. Determining the gene structure is a fundamental requirement to effectively interpret gene function and regulation. An important part in that determination process is the identification of translation initiation sites. In this paper, we propose a novel approach for automatic prediction of translation initiation sites, leveraging convolutional neural networks that allow for automatic feature extraction. Our experimental results demonstrate that we are able to improve the state-of-the-art approaches with a decrease of 75.2% in false positive rate and with a decrease of 24.5% in error rate on chosen datasets. Furthermore, an in-depth analysis of the decision-making process used by our predictive model shows that our neural network implicitly learns biologically relevant features from scratch, without any prior knowledge about the problem at hand, such as the Kozak consensus sequence, the influence of stop and start codons in the sequence and the presence of donor splice site patterns. In summary, our findings yield a better understanding of the internal reasoning of a convolutional neural network when applying such a neural network to genomic data.
Theoretical material investigation based on density functional theory (DFT) has been a breakthrough in the last century. Nevertheless, the optical properties calculated by DFT generally show poor agreement with experimental results particularly when the absorption-coefficient ({alpha}) spectra in logarithmic scale are compared. In this study, we have established an alternative DFT approach (PHS method) that calculates highly accurate {alpha} spectra, which show remarkable agreement with experimental spectra even in logarithmic scale. In the developed method, the optical function estimated from generalized gradient approximation (GGA) using very high-density k mesh is blue-shifted by incorporating the energy-scale correction by a hybrid functional and the amplitude correction by sum rule. Our simple approach enables high-precision prediction of the experimental {alpha} spectra of all solar-cell materials (GaAs, InP, CdTe, CuInSe2 and Cu2ZnGeSe4) investigated here. The developed method is superior to conventional GGA, hybrid functional and GW methods and has clear advantages in accuracy and computational cost.
The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property space. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materials space in automated materials design.
We propose an image-classification method to predict the perceived-relevance of text documents from eye-movements. An eye-tracking study was conducted where participants read short news articles, and rated them as relevant or irrelevant for answering a trigger question. We encode participants eye-movement scanpaths as images, and then train a convolutional neural network classifier using these scanpath images. The trained classifier is used to predict participants perceived-relevance of news articles from the corresponding scanpath images. This method is content-independent, as the classifier does not require knowledge of the screen-content, or the users information-task. Even with little data, the image classifier can predict perceived-relevance with up to 80% accuracy. When compared to similar eye-tracking studies from the literature, this scanpath image classification method outperforms previously reported metrics by appreciable margins. We also attempt to interpret how the image classifier differentiates between scanpaths on relevant and irrelevant documents.
Graph neural networks (GNNs) have achieved great success on various tasks and fields that require relational modeling. GNNs aggregate node features using the graph structure as inductive biases resulting in flexible and powerful models. However, GNNs remain hard to interpret as the interplay between node features and graph structure is only implicitly learned. In this paper, we propose a novel method called Kedge for explicitly sparsifying the underlying graph by removing unnecessary neighbors. Our key idea is based on a tractable method for sparsification using the Hard Kumaraswamy distribution that can be used in conjugation with any GNN model. Kedge learns edge masks in a modular fashion trained with any GNN allowing for gradient based optimization in an end-to-end fashion. We demonstrate through extensive experiments that our model Kedge can prune a large proportion of the edges with only a minor effect on the test accuracy. Specifically, in the PubMed dataset, Kedge learns to drop more than 80% of the edges with an accuracy drop of merely 2% showing that graph structure has only a small contribution in comparison to node features. Finally, we also show that Kedge effectively counters the over-smoothing phenomena in deep GNNs by maintaining good task performance with increasing GNN layers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا