Do you want to publish a course? Click here

HQE parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses

58   0   0.0 ( 0 )
 Added by Aurora Melis
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present a new lattice determination of some of the parameters appearing both in the Operator Product Expansion (OPE) analysis of the inclusive semileptonic $B$-meson decays and in the Heavy Quark Expansion (HQE) of the pseudoscalar (PS) and vector (V) heavy-light meson masses. We perform a lattice QCD (LQCD) computation of PS and V heavy-light meson masses for heavy-quark masses $m_h$ in the range from $m_c^{rm phys}$ to $simeq 4m_b^{rm phys}$. We employed the $N_f = 2+1+1$ gauge configurations of the European Twisted Mass Collaboration (ETMC) at three values of the lattice spacing $a simeq (0.062, 0.082, 0.089)$ fm with pion masses in the range $M_pi simeq (210 - 450)$ MeV. The heavy-quark mass is simulated directly on the lattice up to $simeq 3m_c^{rm phys}$. The interpolation to the physical $m_b^{rm phys}$ is performed using the ETMC ratio method and adopting the kinetic mass scheme. We obtain $m_b^{rm kin}(1~mbox{GeV}) = 4.61 (20)$ GeV ($overline{m}_b(overline{m}_b) = 4.26 (18)$ GeV in the $overline{rm MS}$ scheme). The lattice data are analyzed in terms of the HQE and the matrix elements of dimension-4 and dimension-5 operators are extracted with good precision, namely: $overline{Lambda} = 0.552 (26)$ GeV, $mu_pi^2 = 0.321 (32)$ GeV$^2$ and $mu_G^2(m_b) = 0.253 (25)$ GeV$^2$. The data also allow for an estimate of the dimension-6 operator matrix elements.



rate research

Read More

We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a^2~0.005, 0.01 and 0.015 fm^2, and the continuum limit is taken assuming an O(a^2) discretization error. The light meson spectrum is consistent with experiment. The up, down and strange quark masses in the bar{MS} scheme at 2 GeV are bar{m}=(m_{u}+m_{d})/2=3.55^{+0.65}_{-0.28} MeV and m_s=90.1^{+17.2}_{-6.1} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
Hadron masses are subject to few MeV corrections arising from QED interactions, almost entirely arising from the electric charge of the valence quarks. The QED effects include both self-energy contributions and interactions between the valence quarks/anti-quarks. By combining results from different signs of the valence quark electric charge we are able to isolate the interaction term which is dominated by the Coulomb piece, $langle alpha_{mathrm{QED}}e_{q_1}e_{overline{q}_2}/r rangle$, in the nonrelativistic limit. We study this for $D_s$, $eta_c$ and $J/psi$ mesons, working in lattice QCD plus quenched QED. We use gluon field configurations that include up, down, strange and charm quarks in the sea at multiple values of the lattice spacing. Our results, including also values for mesons with quarks heavier than charm, can be used to improve phenomenological models for the QED contributions. The QED interaction term carries information about meson structure; we derive effective sizes $langle 1/r_{mathrm{eff}} rangle^{-1}$ for $eta_c$, $J/psi$ and $D_s$ of 0.206(8) fm, 0.321(14) fm and 0.307(31) fm respectively.
The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark and two very light flavors ($u/d$) of variable mass allowing extrapolations to the physical chiral limit. We employ Nonrelativistic QCD to simulate the $b$ quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 GeV$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |v_{ub}|^2 = 1.46(35) ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averaging Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 4.22(30)(51) times 10^{-3}$. PLEASE NOTE APPENDIX B with an ERRATUM, to appear in Physical Review D, to the published version of this e-print (Phys.Rev.D 73, 074502 (2006)). Results for the form factor $f_+(q^2)$ in the chiral limit have changed significantly. The last two sentences in this abstract should now read; We calculate the form factor $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 Gev$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |V_{ub}|^2 = 2.07(57)ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averagibg Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 3.55(25)(50) times 10^{-3}$.
We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{eta_b} = 0.667(6) GeV. Our value for f_{eta_b} is within a few percent of f_{Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system than a heavy-heavy one. Finally we summarise current results on decay constants of gold-plated mesons.
We present improved results for the B and D meson spectrum from lattice QCD including the effect of u/d,s and c quarks in the sea. For the B mesons the Highly Improved Staggered Quark action is used for the sea and light valence quarks and NonRelativistic QCD for the b quark including O(alpha_s) radiative corrections to many of the Wilson coefficients for the first time. The D mesons use the Highly Improved Staggered Quark action for both valence quarks on the same sea. We find M_{B_s}-M_B=84(2) MeV, M_{B_s}=5.366(8) GeV, M_{B_c}=6.278(9) GeV, M_{D_s}=1.9697(33) GeV, and M_{D_s}-M_{D}=101(3) MeV. Our results for the B meson hyperfine splittings are M_{B^*}-M_{B}=50(3) MeV, M_{B_s^*}-M_{B_s}=52(3) MeV, in good agreement with existing experimental results. This demonstrates that our perturbative improvement of the NRQCD chromo-magnetic coupling works for both heavyonium and heavy-light mesons. We predict M_{B_c^*}-M_{B_c}=54(3) MeV. We also present first results for the radially excited B_c states as well as the orbitally excited scalar B_c0^* and axial vector B_c1 mesons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا