Do you want to publish a course? Click here

Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD

256   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{eta_b} = 0.667(6) GeV. Our value for f_{eta_b} is within a few percent of f_{Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system than a heavy-heavy one. Finally we summarise current results on decay constants of gold-plated mesons.



rate research

Read More

We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(alpha_s a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_B0 = 199.5(12.6) MeV, f_B+ = 195.6(14.9) MeV, f_Bs = 235.4(12.2) MeV, f_Bs/f_B0 = 1.197(50), and f_Bs/f_B+ = 1.223(71), where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of $B$-meson decay constants using staggered light quarks.
We present a study of leptonic $B$ meson decay constants in lattice QCD with two flavors ($N_f=2$) of light dynamical quarks using NRQCD for the heavy quark. Gauge configurations are generated with a renormalization-group improved gauge action and a meanfield-improved clover light quark action. Measurements are carried out at two values of $beta=6/g^2$, each for four sea quark masses, corresponding to the inverse lattice spacing $a^{-1}approx 1.3$ and 1.8 GeV in the chiral limit of sea quark. The continuum values of the decay constants are derived by evaluating the discretization errors at each finite lattice spacing. We find $f_B^{N_f=2}=204(8)(29)(+44) $ MeV, $f_{B_s}^{N_f=2} = 242(9)(34)(+38)$ MeV, and $f_{B_s}^{N_f=2}/f_B^{N_f=2} = 1.179(18)(23)$, where the errors listed are statistical, systematic and uncertainty due to choice of the physical quantity used to fix the scale. Comparison is made to quenched results ($N_f=0$) obtained with the same action combination and matching lattice spacings. We find $f_B^{N_f=2}/f_B^{N_f=0}=1.07(5)$, $f_{B_s}^{N_f=2}/f_{B_s}^{N_f=0}=1.10(5)$ and $(f_{B_s}/f_B)^{N_f=2}/(f_{B_s}/f_B)^{N_f=0}=1.03(2)$, which indicates a 5--10% increase in the values of the decay constants, but no appreciable change in the ratio $f_{B_s}/f_B$, due to sea quarks.
We extend the picture of $B$-meson decay constants obtained in lattice QCD beyond those of the $B$, $B_s$ and $B_c$ to give the first full lattice QCD results for the $B^*$, $B^*_s$ and $B^*_c$. We use improved NonRelativistic QCD for the valence $b$ quark and the Highly Improved Staggered Quark (HISQ) action for the lighter quarks on gluon field configurations that include the effect of $u/d$, $s$ and $c$ quarks in the sea with $u/d$ quark masses going down to physical values. For the ratio of vector to pseudoscalar decay constants, we find $f_{B^*}/f_B$ = 0.941(26), $f_{B^*_s}/f_{B_s}$ = 0.953(23) (both $2sigma$ less than 1.0) and $f_{B^*_c}/f_{B_c}$ = 0.988(27). Taking correlated uncertainties into account we see clear indications that the ratio increases as the mass of the lighter quark increases. We compare our results to those using the HISQ formalism for all quarks and find good agreement both on decay constant values when the heaviest quark is a $b$ and on the dependence on the mass of the heaviest quark in the region of the $b$. Finally, we give an overview plot of decay constants for gold-plated mesons, the most complete picture of these hadronic parameters to date.
Hadron masses are subject to few MeV corrections arising from QED interactions, almost entirely arising from the electric charge of the valence quarks. The QED effects include both self-energy contributions and interactions between the valence quarks/anti-quarks. By combining results from different signs of the valence quark electric charge we are able to isolate the interaction term which is dominated by the Coulomb piece, $langle alpha_{mathrm{QED}}e_{q_1}e_{overline{q}_2}/r rangle$, in the nonrelativistic limit. We study this for $D_s$, $eta_c$ and $J/psi$ mesons, working in lattice QCD plus quenched QED. We use gluon field configurations that include up, down, strange and charm quarks in the sea at multiple values of the lattice spacing. Our results, including also values for mesons with quarks heavier than charm, can be used to improve phenomenological models for the QED contributions. The QED interaction term carries information about meson structure; we derive effective sizes $langle 1/r_{mathrm{eff}} rangle^{-1}$ for $eta_c$, $J/psi$ and $D_s$ of 0.206(8) fm, 0.321(14) fm and 0.307(31) fm respectively.
We improve a previous quenched result for heavy-light pseudoscalar meson decay constants with the light quark taken to be the strange quark. A finer lattice resolution (a ~ 0.05 fm) in the continuum limit extrapolation of the data computed in the static approximation is included. We also give further details concerning the techniques used in order to keep the statistical and systematic errors at large lattice sizes L/a under control. Our final result, obtained by combining these data with determinations of the decay constant for pseudoscalar mesons around the D_s, follows nicely the qualitative expectation of the 1/m-expansion with a (relative) 1/m-term of about -0.5 GeV/m_PS. At the physical b-quark mass we obtain F_{B_s} = 193(7) MeV, where all errors apart from the quenched approximation are included.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا