Do you want to publish a course? Click here

$F_gamma$: a new observable for photon-hadron discrimination in hybrid air shower events

53   0   0.0 ( 0 )
 Added by Marcus Niechciol
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, $F_gamma$, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. $F_gamma$ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known $X_text{max}$ observable (the atmospheric depth of the shower maximum). At energies around $1,text{EeV}$ ($10,text{EeV}$), $F_gamma$ provides a background rejection better than $97.8,%$ ($99.9,%$) at a signal efficiency of $50,%$. Advantages of the observable $F_gamma$ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, $F_gamma$ complements nicely to $X_text{max}$ such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

rate research

Read More

Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^circ$ N, 4300 m above sea level, atmospheric depth: 606 g/m$^2$) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thick and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to $10^{6}$ MIPs. The first phase of this experiment, named YAC-I, consists of 16 YAC detectors each having the size 40 cm $times$ 50 cm and distributing in a grid with an effective area of 10 m$^{2}$. YAC-I is used to check hadronic interaction models. The second phase of the experiment, called YAC-II, consists of 124 YAC detectors with coverage about 500 m$^2$. The inner 100 detectors of 80 cm $times $ 50 cm each are deployed in a 10 $times$ 10 matrix from with a 1.9 m separation and the outer 24 detectors of 100 cm $times$ 50 cm each are distributed around them to reject non-core events whose shower cores are far from the YAC-II array. YAC-II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of proton, helium and iron nuclei between 5$times$$10^{13}$ eV and $10^{16}$ eV covering the knee and also being connected with direct observations at energies around 100 TeV. We present the design and performance of YAC-II in this paper.
Two unusual neutrino events in the Antarctic Impulse Transient Antenna (ANITA) appear to have been generated by air showers from a particle emerging from the Earth at angles 25-35 degrees above the horizon. We evaluate the effective aperture for ANITA with a simplified detection model to illustrate the features of the angular dependence of expected events for incident standard model tau neutrinos and for sterile neutrinos that mix with tau neutrinos. We apply our sterile neutrino aperture results to a dark matter scenario with long-lived supermassive dark matter that decay to sterile neutrino-like particles. We find that for up-going air showers from tau decays, from isotropic fluxes of standard model, sterile neutrinos or other particles that couple to the tau through suppressed weak interaction cross sections cannot be responsible for the unusual events.
The radio detection method for cosmic rays relies on coherent emission from electrons and positrons which is beamed in a narrow cone along the shower axis. Currently the only mod- els to reproduce this emission with sufficient accuracy are Monte Carlo based simulations of the particle and radio emission physics, which require large investments of computation time. The work presented here focuses on condensing the simulation results into a semi-analytical model. This relies on building a framework based on theoretical predictions of radio emission, but instead of calculating the radio signal directly these models are used to map template simu- lations to the specifications of a given radio event. Our current approach slices the radio signal based on atmospheric depth of origin and weights these slices based on a shower parameter such as electron number or an effective dipole moment. One significant gain over the existing Monte Carlo codes lies in the fact this makes the depth of the shower maximum a direct input to the simulation where currently one has to pre-select showers based on their random number seed. Such a model has great potential for heavily simulation-based analysis methods, for example the LOFAR air shower reconstruction. These techniques are severely limited by the available computation time but have the lowest errors in real measurement applications.
Relativistic, charged particles present in extensive air showers lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong electric fields in the atmosphere, which can lead to further multiplication and acceleration of the charged particles and thus have influence on the form and strength of the radio emission. For a reliable energy reconstruction of the primary cosmic ray by means of the measured radio signal it is very important to understand how electric fields affect the radio emission. In addition, lightning strikes are a prominent source of broadband radio emissions that are visible over very long distances. This, on the one hand, causes difficulties in the detection of the much lower signal of the air shower. On the other hand the recorded signals can be used to study features of the lightning development. The detection of cosmic rays via the radio emission and the influence of strong electric fields on this detection technique is investigated with the LOPES experiment in Karlsruhe, Germany. The important question if a lightning is initiated by the high electron density given at the maximum of a high-energy cosmic-ray air shower is also investigated, but could not be answered by LOPES. But, these investigations exhibit the capabilities of EAS radio antenna arrays for lightning studies. We report about the studies of LOPES measured radio signals of air showers taken during thunderstorms and give a short outlook to new measurements dedicated to search for correlations of lightning and cosmic rays.
EUSO-SPB1 was a balloon-borne pathfinder mission of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. A 12-day long flight started from New Zealand on April 25th, 2017 on-board the NASAs Super Pressure Balloon. With capability of detecting EeV energy air showers, the data acquisition was performed using a 1 m^2 two-Fresnel-lens UV-sensitive telescope with fast readout electronics in the air shower detection mode over ~30 hours at ~16--30 km above South Pacific. Using a variety of approaches, we searched for air shower events. Up to now, no air shower events have been identified. The effective exposure, regarding the role of the clouds in particular, was estimated based on the air shower and detector simulations together with a numerical weather forecast model. Compared with the case assuming the fully clear atmosphere conditions, more than ~60% of showers are detectable regardless the presence of the clouds. The studies in the present work will be applied in the follow-up pathfinders and in the future full-scale missions in the JEM-EUSO program.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا