Do you want to publish a course? Click here

Thunderstorm Observations by Air-Shower Radio Antenna Arrays

248   0   0.0 ( 0 )
 Added by Daniel Huber
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relativistic, charged particles present in extensive air showers lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong electric fields in the atmosphere, which can lead to further multiplication and acceleration of the charged particles and thus have influence on the form and strength of the radio emission. For a reliable energy reconstruction of the primary cosmic ray by means of the measured radio signal it is very important to understand how electric fields affect the radio emission. In addition, lightning strikes are a prominent source of broadband radio emissions that are visible over very long distances. This, on the one hand, causes difficulties in the detection of the much lower signal of the air shower. On the other hand the recorded signals can be used to study features of the lightning development. The detection of cosmic rays via the radio emission and the influence of strong electric fields on this detection technique is investigated with the LOPES experiment in Karlsruhe, Germany. The important question if a lightning is initiated by the high electron density given at the maximum of a high-energy cosmic-ray air shower is also investigated, but could not be answered by LOPES. But, these investigations exhibit the capabilities of EAS radio antenna arrays for lightning studies. We report about the studies of LOPES measured radio signals of air showers taken during thunderstorms and give a short outlook to new measurements dedicated to search for correlations of lightning and cosmic rays.



rate research

Read More

Accurate prediction of the radio emission from cosmic ray air showers relies on computationally demanding Monte Carlo simulations such as CoREAS. We aim to expedite this process via a semi-analytical synthesis model while maintaining high accuracy by using simulated radio pulses as templates. We present our key concept for template processing focusing on the development of the particle cascade and its empirical effect on the locally produced radio signal. In this context the universality of the radio emission from small sections of an air shower also becomes important where most previous studies focus on integral quantities observable at far distances.
The radio detection method for cosmic rays relies on coherent emission from electrons and positrons which is beamed in a narrow cone along the shower axis. Currently the only mod- els to reproduce this emission with sufficient accuracy are Monte Carlo based simulations of the particle and radio emission physics, which require large investments of computation time. The work presented here focuses on condensing the simulation results into a semi-analytical model. This relies on building a framework based on theoretical predictions of radio emission, but instead of calculating the radio signal directly these models are used to map template simu- lations to the specifications of a given radio event. Our current approach slices the radio signal based on atmospheric depth of origin and weights these slices based on a shower parameter such as electron number or an effective dipole moment. One significant gain over the existing Monte Carlo codes lies in the fact this makes the depth of the shower maximum a direct input to the simulation where currently one has to pre-select showers based on their random number seed. Such a model has great potential for heavily simulation-based analysis methods, for example the LOFAR air shower reconstruction. These techniques are severely limited by the available computation time but have the lowest errors in real measurement applications.
The study of the ultra-high energy cosmic rays, neutrinos and gamma rays is one of the most important challenges in astrophysics. The low fluxes of these particles do not allow one to detect them directly. The detection is performed by the measuring of the air-showers produced by the primary particles in the Earths atmosphere. A radio detection of ultra-high energy air-showers is a cost-effective technique that provides a precise reconstruction of the parameters of primary particle and almost full duty cycle in comparison with other methods. The main challenge of the modern radio detectors is the development of efficient self-trigger technology, resistant to high-level background and radio frequency interference. Most of the modern radio detectors receive trigger generated by either particle or optical detectors. The development of the self trigger for the radio detector will significantly simplify the operation of existing instruments and allow one to access the main advantages of the radio method as well as open the way to the construction of the next generation of large-scale radio detectors. In the present work we discuss our progress in the solution of this problem, particularly the classification of broadband pulses.
To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of LOPES-3D is demonstrated.
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semi-analytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in a optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte-Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا