Do you want to publish a course? Click here

Haantjes Algebras and Diagonalization

76   0   0.0 ( 0 )
 Added by Piergiulio Tempesta
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the notion of Haantjes algebra: It consists of an assignment of a family of operator fields on a differentiable manifold, each of them with vanishing Haantjes torsion. They are also required to satisfy suitable compatibility conditions. Haantjes algebras naturally generalize several known interesting geometric structures, arising in Riemannian geometry and in the theory of integrable systems. At the same time, as we will show, they play a crucial role in the theory of diagonalization of operators on differentiable manifolds. Assuming that the operators of a Haantjes algebra are semisimple and commute, we shall prove that there exists a set of local coordinates where all operators can be diagonalized simultaneously. Moreover, in the general, non-semisimple case, they acquire simultaneously, in a suitable local chart, a block-diagonal form.



rate research

Read More

We introduce the notions of relational groupoids and relational convolution algebras. We provide various examples arising from the group algebra of a group $G$ and a given normal subgroup $H$. We also give conditions for the existence of a Haar system of measures on a relational groupoid compatible with the convolution, and we prove a reduction theorem that recovers the usual convolution of a Lie groupoid.
123 - Tosiaki Kori , Yuto Imai 2013
Let $H$ be the quaternion algebra. Let $g$ be a complex Lie algebra and let $U(g)$ be the enveloping algebra of $g$. We define a Lie algebra structure on the tensor product space of $H$ and $U(g)$, and obtain the quaternification $g^H$ of $g$. Let $S^3g^H$ be the set of $g^H$-valued smooth mappings over $S^3$. The Lie algebra structure on $S^3g^H$ is induced naturally from that of $g^H$. On $S^3$ exists the space of Laurent polynomial spinors spanned by a complete orthogonal system of eigen spinors of the tangential Dirac operator on $S^3$. Tensoring $U(g)$ we have the space of $U(g)$-valued Laurent polynomial spinors, which is a Lie subalgebra of $S^3g^H$. We introduce a 2-cocycle on the space of $U(g)$-valued Laurent polynomial spinors by the aid of a tangential vector field on $S^3$. Then we have the corresponding central extension $hat g(a)$ of the Lie algebra of $U(g)$-valued Laurent polynomial spinors. Finally we have the a Lie algebra $hat g=hat g(a)+Cd$ which is obtained by adding to $hat g(a)$ a derivation $d$ which acts on $hat g(a)$ as the radial derivation. When $g$ is a simple Lie algebra with its Cartan subalgebra $h$, We shall investigate the weight space decomposition of $(hat g, ad(hat h))$, where $hat h=h+Ca+Cd$ . The previo
100 - John Z Imbrie 2016
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.
147 - Bindu A. Bambah 2003
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes are constructed. Applications to quantum mechanical systems including supersymmetric quantum mechanics are discussed
The framework of dynamical C*-algebras for scalar fields in Minkowski space, based on local scattering operators, is extended to theories with locally perturbed kinetic terms. These terms encode information about the underlying spacetime metric, so the causality relations between the scattering operators have to be adjusted accordingly. It is shown that the extended algebra describes scalar quantum fields, propagating in locally deformed Minkowski spaces. Concrete representations of the abstract scattering operators, inducing this motion, are known to exist on Fock space. The proof that these representers also satisfy the generalized causality relations requires, however, novel arguments of a cohomological nature. They imply that Fock space representations of the extended dynamical C*-algebra exist, involving linear as well as kinetic and pointlike quadratic perturbations of the field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا