No Arabic abstract
In this paper, we discuss and calculate the electroweak parameters $R_l$, $A_l$, and $N_{ u}^l$ in a model that combine inverse seesaw with the scotogenic model. Dark matter relic density is also considered. Due to the stringent constraint from the ATLAS experimental data, it is difficult to detect the loop effect on $R_l$, $A_l$ in this model considering both the theoretical and future experimental uncertainties. However, $N_{ u}^l$ can sometimes become large enough for the future experiments to verify.
Fermionic unparticles are introduced and their basic properties are discussed. Some phenomenologies related are exploited, such as their effects on charged Higgs boson decays and anomalous magnetic moments of leptons. Also, it has been found that measurements of $B^0-bar B^0$ mixing could yield interesting constraints on couplings between unparticle operators and standard model fields.
The generation of neutrino masses by inverse seesaw mechanisms has advantages over other seesaw models since the potential new physics can be produced at the TeV scale. We propose a model that generates the inverse seesaw mechanism via spontaneous breaking of the lepton number, by extending the Standard Model with two scalar singlets and two fermion singlets both charged under lepton number. The model gives rise to a massless Majoron and a massive pseudoscalar which we dub as massive Majoron, which corresponds to the Nambu-Goldstone boson of the breaking of lepton number. If the massive Majoron is stable in cosmological time, it might play the role of a suitable Dark Matter candidate. In this scenario, we examine the model with a massive Majoron in the keV range. In this regime, its decay mode to neutrinos is sensitive to the ratio between the vevs of the new scalars ($omega$), and it vanishes when $ omega simeq sqrt{2/3}$, which is valid within a large region in the parameter space. On the other hand, the cosmological lifetime for the Dark Matter candidate places constraints on its mass via scalar decays. In addition, simple mechanisms that explain the Dark Matter relic abundance within this context and plausible modifications to the proposed setup are briefly discussed.
We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw mechanism. Then we can obtain some predictions in neutrino sector such as Dirac-CP phase and sum of neutrino mass, which are shown by our numerical analysis. Besides the relation among masses of heavy pseudo-Dirac neutrino can be obtained since it is also restricted by the modular symmetry. We also discuss implications to lepton flavor violation and collider physics in our model.
We consider the production of a heavy neutrino and its possible signals at the Large Hadron-electron Collider (LHeC) in the context of an inverse-seesaw model for neutrino mass generation. The inverse seesaw model extends the Standard Model (SM) particle content by adding two neutral singlet fermions for each lepton generation. It is a well motivated model in the context of generating non-zero neutrino masses and mixings. The proposed future LHeC machine presents us with a particularly interesting possibility to probe such extensions of the SM with new leptons due to the presence of an electron beam in the initial state. We show that the LHeC will be able to probe an inverse scenario with much better efficacy compared to the LHC with very nominal integrated luminosities as well as exploit the advantage of having the electron beam polarized to enhance the heavy neutrino production rates.
We consider an extension of the standard model with three Higgs doublet model and $S_3times mathbb{Z}_2$ discrete symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We have calculated all the mass spectra in the scalar and lepton sectors and accommodated the leptonic mixing matrix as well. We also show that the model has scalar and pseudoscalar candidates to dark matter. Constraints on the parameters of the model coming from the decay $muto egamma$ were considered and we found signals between the current and the upcoming experimental limits, and from that decay we can predict the one-loop $muto eebar{e}$ channel.