Do you want to publish a course? Click here

Some Phenomenologies of Unparticle Physics

116   0   0.0 ( 0 )
 Added by Guohuai Zhu
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Fermionic unparticles are introduced and their basic properties are discussed. Some phenomenologies related are exploited, such as their effects on charged Higgs boson decays and anomalous magnetic moments of leptons. Also, it has been found that measurements of $B^0-bar B^0$ mixing could yield interesting constraints on couplings between unparticle operators and standard model fields.



rate research

Read More

116 - A. Freitas , D. Wyler 2007
We investigate the effects of all flavor blind CP-conserving unparticle operators on 5th force experiments, stellar cooling, supernova explosions and compare the limits with each other and with those obtainable from collider experiments. In general, astrophysical bounds are considerably stronger, however they depend strongly on the dimension d_U of the unparticle operator. While for d_U=1, 5th force experiments yield exceedingly strong bounds, the bounds from stellar and supernova cooling are more comparable for d_U=2, with stellar cooling being most restrictive. Bounds on vectorial unparticle couplings are generally stronger than those on scalar ones.
48 - Yi-Lei Tang 2017
In this paper, we discuss and calculate the electroweak parameters $R_l$, $A_l$, and $N_{ u}^l$ in a model that combine inverse seesaw with the scotogenic model. Dark matter relic density is also considered. Due to the stringent constraint from the ATLAS experimental data, it is difficult to detect the loop effect on $R_l$, $A_l$ in this model considering both the theoretical and future experimental uncertainties. However, $N_{ u}^l$ can sometimes become large enough for the future experiments to verify.
We show how neutrino data can be used in order to constrain the free parameters of possible extensions to the standard model of elementary particles (SM). For definiteness, we focus in the recently proposed unparticle scenario. We show that neutrino data, in particular the MUNU experiment, can set stronger bounds than previous reported limits in the scale dimension parameter for certain region (d > 1.5). We compute the sensitivity of future neutrino experiments to unparticle physics such as future neutrino-electron scattering detectors, coherent neutrino-nuclei scattering as well as the ILC . In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks.Finally our results are compared with the current astrophysical limits.
We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.
We have analyzed the electron anti-neutrino scattering off electrons and the electron anti-neutrino-nuclei coherent scattering in order to obtain constraints on tensorial couplings. We have studied the formalism of non-standard interactions (NSI), as well as the case of Unparticle physics. For our analysis we have focused on the recent TEXONO collaboration results and we have obtained current constraints to possible electron anti-neutrino-electron tensorial couplings in both new physics formalisms. The possibility of measuring for the first time electron anti-neutrino-nucleus coherent scattering and its potential to further constrain electron anti-neutrino-quark tensorial couplings is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا