Do you want to publish a course? Click here

Andreev reflections and the quantum physics of black holes

63   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection-analogue of Hayden and Preskills description of a black hole final state, where the black hole is described as an information mirror. The analogy between Crossed Andreev Reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wavefunction of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pair-like singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.



rate research

Read More

We propose a microscopic quantum description for Hawking radiation as Andreev reflections, which resolves the quantum information paradox at black hole event horizons. The detailed microscopic analysis presented here reveals how a black hole, treated as an Andreev reflecting mirror, provides a manifestly unitary description of an evaporating black hole, expanding our previous analysis presented in [PRD 96, 124011 (2017), PRD 98, 124043 (2018)]; In our analogy, a black hole resolves the information paradox by accepting particles -- pairing them with the infalling Hawking quanta into a Bardeen-Cooper-Schrieffer (BCS) like quantum ground state -- while Andreev reflecting the quantum information as encoded in outgoing Hawking radiation. The present approach goes beyond the black hole final state proposal by Horowitz and Maldacena [JHEP 02, 008 (2004)], by providing necessary microscopic details which allows us to circumvent important shortcomings of the black hole final state proposal. We also generalize the present Hamiltonian description to make an analogy to the apparent loss of quantum information possible in an Einstein-Rosen bridge, via crossed Andreev reflections.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.
227 - M. Houzet , P. Samuelsson 2010
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.
The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordstrom situation. For a distant observer the {horizon} crossing occurs in an infinite time and the pulsations of the black hole quantum beating heart are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.
The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmological term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا