No Arabic abstract
The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmological term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.
The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordstrom situation. For a distant observer the {horizon} crossing occurs in an infinite time and the pulsations of the black hole quantum beating heart are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.
We track the evolution of entropy and black holes in a cyclic universe that undergoes repeated intervals of expansion followed by slow contraction and a smooth (non-singular) bounce. In this kind of cyclic scenario, there is no big crunch and no chaotic mixmaster behavior. We explain why the entropy following each bounce is naturally partitioned into near-maximal entropy in the matter-radiation sector and near-minimal in the gravitational sector, satisfying the Weyl curvature conditions conjectured to be essential for a cosmology consistent with observations. As a result, this kind of cyclic universe can undergo an unbounded number of cycles in the past and/or the future.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetric solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
With the successes of $f(R)$ theory as a neutral modification of Einsteins general relativity (GR), we continue our study in this field and attempt to find general natural and charged black hole (BH) solutions. In the previous papers cite{Nashed:2020mnp,Nashed:2020tbp}, we applied the field equation of the $f(R)$ gravity to a spherically symmetric space-time $ds^2=-U(r)dt^2+frac{dr^2}{V(r)}+r^2 left( dtheta^2+sin^2theta dphi^2 right)$ with unequal metric potentials $U(r)$ and $V(r)$ and with/without electric charge. Then we have obtained equations which include all the possible static solutions with spherical symmetry. To ensure the closed form of system of the resulting differential equations in order to obtain specific solutions, we assumed the derivative of the $f(R)$ with respect to the scalar curvature $R$ to have a form $F_1(r)=frac{df(R(r))}{dR(r)} propto frac{c}{r^n}$ but in case $n>2$, the resulting black hole solutions with/without charge do not generate asymptotically GR BH solutions in the limit $crightarrow 0$ which means that the only case that can generate GR BHs is $n=2$. In this paper, we assume another form, i.e., $F_1(r)= 1-frac{F_0-left(n-3right)}{r^n}$ with a constant $F_0$ and show that we can generate asymptotically GR BH solutions for $n>2$ but we show that the $n=2$ case is not allowed. This form of $F_1(r)$ could be the most acceptable physical form that we can generate from it physical metric potentials that can have a well-known asymptotic form and we obtain the metric of the Einstein general relativity in the limit of $F_0to n-3$. We show that the form of the electric charge depends on $n$ and that $n eq 2$. Our study shows that the power $n$ is sensitive and why we should exclude the case $n=2$ for the choice of $F_1(r)$ presented in this study.
We devise a novel mechanism and for the first time demonstrate that the Higgs model in particle physics can drive the inflation to satisfy the cosmic microwave background observations and simultaneously enhance the curvature perturbations at small scales to explain the abundance of dark matter in our universe in the form of primordial black holes. The production of primordial black holes is accompanied by the secondary gravitational waves induced by the first order Higgs fluctuations which is expected observable by space-based gravitational wave detectors. We propose possible cosmological probes of Higgs field in the future observations for primordial black holes dark matter or stochastic gravitational waves.