Do you want to publish a course? Click here

Size effect in ion transport through angstrom-scale slits

104   0   0.0 ( 0 )
 Added by Andre Geim K
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been an ultimate but seemingly distant goal of nanofluidics to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying effects of angstrom-scale confinement, which is important for development of nanofluidics, molecular separation and other nanoscale technologies.



rate research

Read More

Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme selectivity combined with high flow rates. Here we study gas transport through individual graphene pores with an effective diameter of about 2 angstroms, or about one missing carbon ring, which are created reproducibly by a short-time exposure to a low-kV electron beam. Helium and hydrogen permeate easily through these pores whereas larger molecules such as xenon and methane are blocked. Permeating gases experience activation barriers that increase quadratically with the kinetic diameter, and the transport process crucially involves surface adsorption. Our results reveal underlying mechanisms for the long sought-after exponential selectivity and suggest the bounds on possible performance of porous two-dimensional membranes.
While recent experiments on the spin Seebeck effect have revealed the decisive role of the magnon contribution to the heat current $Q$ in hybrid systems containing thin ferromagnetic layers, the available acoustic mismatch theory does not account for their magnetic properties. Here, we analyze theoretically the heat transfer through an insulating ferromagnet (F) sandwiched between two insulators (I). Depending on the relation between the F thickness, $d$, and the mean free path of phonons generated by magnons, $l_{ls}$, we reveal two qualitatively different regimes in the nonlinear heat transport through the F/I interfaces. Namely, in thick F layers the regime of conventional Joule heating with $Q propto T_s^4$ is realized, in which the detailed structure of the F/I interfaces is inessential. Here $T_s$ is the magnon temperature. By contrast, in thin F layers with $dll l_{ls}$, most of phonons emitted by magnons can leave F without being absorbed in its interior, giving rise to the emph{magnon overheating} regime with $Q propto T_s^m$ and $mgtrsim7$. Conditions for the examination of both regimes and the determination of $T_s$ from experiments are discussed. The reported results are relevant for the theoretical analysis of the spin Seebeck effect and the development of magnon-based spin caloritronic devices.
82 - S. Pradhan , J. Fransson 2018
We address the shot noise in the tunneling current through a localized spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Buttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights to noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.
Designing platforms to control phase-coherence and interference of electron waves is a cornerstone for future quantum electronics, computing or sensing. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly [Moreno et al., Science 360, 199 (2018)] opening an avenue for controlling the electronic current in a two-dimensional material. By simulating electron transport in real-sized NPG samples we predict that electron waves injected from the tip of a scanning tunneling microscope (STM) behave similarly to photons in coupled waveguides, displaying a Talbot interference pattern. We link the origins of this effect to the band structure of the NPG and further demonstrate how this pattern may be mapped out by a second STM probe. We enable atomistic parameter-free calculations beyond the 100 nm scale by developing a new multi-scale method where first-principles density functional theory regions are seamlessly embedded into a large-scale tight-binding.
Scanning tunneling spectra on single C60 molecules that are sufficiently decoupled from the substrate exhibit a characteristic fine structure, which is explained as due to the dynamic Jahn-Teller effect. Using electron-phonon couplings extracted from density functional theory we calculate the tunneling spectrum through the C60- anionic state and find excellent agreement with measured data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا