Do you want to publish a course? Click here

Irreducible modules over the divergence zero algebras and their $q$-analogues

62   0   0.0 ( 0 )
 Added by Xiangqian Guo
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study a class of $Z_d$-graded modules, which are constructed using Larssons functor from $sl_d$-modules $V$, for the Lie algebras of divergence zero vector fields on tori and quantum tori. We determine the irreducibility of these modules for finite-dimensional or infinite-dimensional $V$ using a unified method. In particular, these modules provide new irreducible weight modules with infinite-dimensional weight spaces for the corresponding algebras.



rate research

Read More

Let $mathbf{k}$ be an algebraically closed field, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra, and let $widehat{Lambda}$ be the repetitive algebra of $Lambda$. For the stable category of finitely generated left $widehat{Lambda}$-modules $widehat{Lambda}$-underline{mod}, we show that the irreducible morphisms fall into three canonical forms: (i) all the component morphisms are split monomorphisms; (ii) all of them are split epimorphisms; (iii) there is exactly one irreducible component. We next use this fact in order to describe the shape of the Auslander-Reiten triangles in $widehat{Lambda}$-underline{mod}. We use the fact (and prove) that every Auslander-Reiten triangle in $widehat{Lambda}$-underline{mod} is induced from an Auslander-Reiten sequence of finitely generated left $widehat{Lambda}$-modules.
In this paper, we continue the study on toroidal vertex algebras initiated in cite{LTW}, to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_{r}(hat{frak{g}})=hat{frak{g}}otimes L_r$, where $hat{frak{g}}$ is an untwisted affine Lie algebra and $L_r=$mathbb{C}[t_{1}^{pm 1},ldots,t_{r}^{pm 1}]$. We first construct an $(r+1)$-toroidal vertex algebra $V(T,0)$ and show that the category of restricted $L_{r}(hat{frak{g}})$-modules is canonically isomorphic to that of $V(T,0)$-modules.Let $c$ denote the standard central element of $hat{frak{g}}$ and set $S_c=U(L_r(mathbb{C}c))$. We furthermore study a distinguished subalgebra of $V(T,0)$, denoted by $V(S_c,0)$. We show that (graded) simple quotient toroidal vertex algebras of $V(S_c,0)$ are parametrized by a $mathbb{Z}^r$-graded ring homomorphism $psi:S_crightarrow L_r$ such that Im$psi$ is a $mathbb{Z}^r$-graded simple $S_c$-module. Denote by $L(psi,0}$ the simple $(r+1)$-toroidal vertex algebra of $V(S_c,0)$ associated to $psi$. We determine for which $psi$, $L(psi,0)$ is an integrable $L_{r}(hat{frak{g}})$-module and we then classify irreducible $L(psi,0)$-modules for such a $psi$. For our need, we also obtain various general results.
We prove a character formula for the irreducible modules from the category $mathcal{O}$ over the simple affine vertex algebra of type $A_n$ and $C_n$ $(n geq 2)$ of level $k=-1$. We also give a conjectured character formula for types $D_4$, $E_6$, $E_7$, $E_8$ and levels $k=-1, cdots, -b$, where $b=2,3,4,6$ respectively.
The $(q, mathbf{Q})$-current algebra associated with the general linear Lie algebra was introduced by the second author in the study of representation theory of cyclotomic $q$-Schur algebras. In this paper, we study the $(q, mathbf{Q})$-current algebra $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$ associated with the special linear Lie algebra $mathfrak{sl}_n$. In particular, we classify finite dimensional simple $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$-modules.
In the present paper, we prove that any finite non-trivial irreducible module over a rank two Lie conformal algebra $mathcal{H}$ is of rank one. We also describe the actions of $mathcal{H}$ on its finite irreducible modules explicitly. Moreover, we show that all finite non-trivial irreducible modules of finite Lie conformal algebras whose semisimple quotient is the Virasoro Lie conformal algebra are of rank one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا