No Arabic abstract
This study addresses the problem of identifying the meaning of unknown words or entities in a discourse with respect to the word embedding approaches used in neural language models. We proposed a method for on-the-fly construction and exploitation of word embeddings in both the input and output layers of a neural model by tracking contexts. This extends the dynamic entity representation used in Kobayashi et al. (2016) and incorporates a copy mechanism proposed independently by Gu et al. (2016) and Gulcehre et al. (2016). In addition, we construct a new task and dataset called Anonymized Language Modeling for evaluating the ability to capture word meanings while reading. Experiments conducted using our novel dataset show that the proposed variant of RNN language model outperformed the baseline model. Furthermore, the experiments also demonstrate that dynamic updates of an output layer help a model predict reappearing entities, whereas those of an input layer are effective to predict words following reappearing entities.
This study proposes a Neural Attentive Bag-of-Entities model, which is a neural network model that performs text classification using entities in a knowledge base. Entities provide unambiguous and relevant semantic signals that are beneficial for capturing semantics in texts. We combine simple high-recall entity detection based on a dictionary, to detect entities in a document, with a novel neural attention mechanism that enables the model to focus on a small number of unambiguous and relevant entities. We tested the effectiveness of our model using two standard text classification datasets (i.e., the 20 Newsgroups and R8 datasets) and a popular factoid question answering dataset based on a trivia quiz game. As a result, our model achieved state-of-the-art results on all datasets. The source code of the proposed model is available online at https://github.com/wikipedia2vec/wikipedia2vec.
The words of a language are randomly replaced in time by new ones, but it has long been known that words corresponding to some items (meanings) are less frequently replaced than others. Usually, the rate of replacement for a given item is not directly observable, but it is inferred by the estimated stability which, on the contrary, is observable. This idea goes back a long way in the lexicostatistical literature, nevertheless nothing ensures that it gives the correct answer. The family of Romance languages allows for a direct test of the estimated stabilities against the replacement rates since the proto-language (Latin) is known and the replacement rates can be explicitly computed. The output of the test is threefold:first, we prove that the standard approach which tries to infer the replacement rates trough the estimated stabilities is sound; second, we are able to rewrite the fundamental formula of Glottochronology for a non universal replacement rate (a rate which depends on the item); third, we give indisputable evidence that the stability ranking is far from being the same for different families of languages. This last result is also supported by comparison with the Malagasy family of dialects. As a side result we also provide some evidence that Vulgar Latin and not Late Classical Latin is at the root of modern Romance languages.
This report describes Athena, a dialogue system for spoken conversation on popular topics and current events. We develop a flexible topic-agnostic approach to dialogue management that dynamically configures dialogue based on general principles of entity and topic coherence. Athenas dialogue manager uses a contract-based method where discourse constraints are dispatched to clusters of response generators. This allows Athena to procure responses from dynamic sources, such as knowledge graph traversals and feature-based on-the-fly response retrieval methods. After describing the dialogue system architecture, we perform an analysis of conversations that Athena participated in during the 2019 Alexa Prize Competition. We conclude with a report on several user studies we carried out to better understand how individual user characteristics affect system ratings.
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation in a fully self-supervised manner. Recent pre-training methods in NLP focus on learning either bottom or top-level language representations: contextualized word representations derived from language model objectives at one extreme and a whole sequence representation learned by order classification of two given textual segments at the other. However, these models are not directly encouraged to capture representations of intermediate-size structures that exist in natural languages such as sentences and the relationships among them. To that end, we propose a new approach to encourage learning of a contextualized sentence-level representation by shuffling the sequence of input sentences and training a hierarchical transformer model to reconstruct the original ordering. Through experiments on downstream tasks such as GLUE, SQuAD, and DiscoEval, we show that this feature of our model improves the performance of the original BERT by large margins.
We propose a new global entity disambiguation (ED) model based on contextualized embeddings of words and entities. Our model is based on a bidirectional transformer encoder (i.e., BERT) and produces contextualized embeddings for words and entities in the input text. The model is trained using a new masked entity prediction task that aims to train the model by predicting randomly masked entities in entity-annotated texts obtained from Wikipedia. We further extend the model by solving ED as a sequential decision task to capture global contextual information. We evaluate our model using six standard ED datasets and achieve new state-of-the-art results on all but one dataset.