Do you want to publish a course? Click here

Analytical solution of the integral equation for partial wave Coulomb t-matrices at excited-state energy

341   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starting from the integral representation of the three-dimensional Coulomb transition matrix elaborated by us formerly with the use of specific symmetry of the interaction in a four-dimensional Euclidean space introduced by Fock, the possibility of the analytical solving of the integral equation for the partial wave transition matrices at the excited bound state energy has been studied. New analytical expressions for the partial s-, p- and d-wave Coulomb t-matrices for like-charged particles and the expression for the partial d-wave t-matrix for unlike-charged particles at the energy of the first excited bound state have been derived.



rate research

Read More

58 - V. F. Kharchenko 2017
We study a special case at which the analytical solution of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix for likely charged particles at negative energy is possible. With the use of the Focks method of the stereographic projection of the momentum space onto the four-dimensional unit sphere, the analytical expressions for s-, p- and d-wave partial Coulomb transition matrices for repulsively interacting particles at bound-state energy have been derived.
85 - V. F. Kharchenko 2016
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states. Keywords: Partial wave Coulomb transition matrix; Lippmann-Schwinger equation; Fock method; Analytical solution PACS Nos. 03.65.-w; 03.65.Nk; 34.20.Cf
78 - Z. Papp , J. Darai , C-.Y. Hu 2001
A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The $e^- e^+ e^-$ S-state resonances up to $n=5$ threshold are calculated.
A novel method for calculating resonances in three-body Coulombic systems is presented. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. To show the power of the method we calculate resonances of the three-$alpha$ and the $H^-$ systems.
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $mathcal{P}$,$mathcal{T}$-violation. Previous studies concentrated on the calculations for different geometries without the averaging over the rovibrational wave function and stressed the possibility that the dependence of the $mathcal{P}$, $mathcal{T}$ parameters on the bond angle may significantly alter the observed value. We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian. The potential surface is constructed based on the two-component relativistic CCSD(T) computation employing the generalized relativistic effective core potential (GRECP) for the Radium atom. The averaged values of the parameters $E_{rm eff}$ and $E_s$ describing the sensitivity of the system to the electron electric dipole moment and the scalar-pseudoscalar nucleon-electron interaction are calculated and the value of $l$-doubling is obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا