Do you want to publish a course? Click here

Resonant-state solution of the Faddeev-Merkuriev integral equations for three-body systems with Coulomb-like potentials

59   0   0.0 ( 0 )
 Added by Zoltan Papp
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel method for calculating resonances in three-body Coulombic systems is presented. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. To show the power of the method we calculate resonances of the three-$alpha$ and the $H^-$ systems.



rate research

Read More

78 - Z. Papp , J. Darai , C-.Y. Hu 2001
A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The $e^- e^+ e^-$ S-state resonances up to $n=5$ threshold are calculated.
104 - S Keller , A Marotta , Z Papp 2008
Three-body resonances in atomic systems are calculated as complex-energy solutions of Faddeev-type integral equations. The homogeneous Faddeev-Merkuriev integral equations are solved by approximating the potential terms in a Coulomb-Sturmian basis. The Coulomb-Sturmian matrix elements of the three-body Coulomb Greens operator has been calculated as a contour integral of two-body Coulomb Greens matrices. This approximation casts the integral equation into a matrix equation and the complex energies are located as the complex zeros of the Fredholm determinant. We calculated resonances of the e-Ps system at higher energies and for total angular momentum L=1 with natural and unnatural parity
72 - Z. Papp , J. Darai , A. Nishimura 2002
We reconsider the homogeneous Faddeev-Merkuriev integral equations for three-body Coulombic systems with attractive Coulomb interactions and point out that the resonant solutions are contaminated with spurious resonances. The spurious solutions are related to the splitting of the attractive Coulomb potential into short- and long-range parts, which is inherent in the approach, but arbitrary to some extent. By varying the parameters of the splitting the spurious solutions can easily be ruled out. We solve the integral equations by using the Coulomb-Sturmian separable expansion approach. This solution method provides an exact description of the threshold phenomena. We have found several new S-wave resonances in the e- e+ e- system in the vicinity of thresholds.
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the $e^++H$ system both below and above the $H(n=2)$ threshold. We found excellent agreements with previous calculations in most cases.
72 - Z. Papp 1998
The set of Faddeev and Lippmann--Schwinger integral equations for three-body systems involving Coulomb interactions deduced from a ``three-potential picture are shown to be compact for all energies and a method of solution is given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا