Do you want to publish a course? Click here

Estimation of reliable range of electron temperature measurements with sets of given optical bandpass filters for KSTAR Thomson scattering system based on synthetic Thomson data

310   0   0.0 ( 0 )
 Added by Young-chul Ghim
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

One factor determining the reliability of measurements of electron temperature using a Thomson scattering (TS) system is transmittance of the optical bandpass filters in polychromators. We investigate the system performance as a function of electron temperature to determine reliable range of measurements for a given set of the optical bandpass filters. We show that such a reliability, i.e., both bias and random errors, can be obtained by building a forward model of the KSTAR TS system to generate synthetic TS data with the prescribed electron temperature and density profiles. The prescribed profiles are compared with the estimated ones to quantify both bias and random errors.



rate research

Read More

244 - Tae-suk Oh , K.H. Kim , J.H. Lee 2015
With the Thomson scattering (TS) system in KSTAR, temporal evolution of electron temperature ($T_e$) is estimated using a weighted look-up table method with fast sampling ($1.25$ or $2.5$ GS/s) digitizers during the 2014 KSTAR campaign. Background noise level is used as a weighting parameter without considering the photon noise due to the absence of information on absolute photon counts detected by the TS system. Estimated electron temperature during a relatively quiescent discharge are scattered, i.e., $15$% variation on $T_e$ with respect to its mean value. We find that this $15$% variation on $T_e$ cannot be explained solely by the background noise level which leads us to include photon noise effects in our analysis. Using synthetic data, we have estimated the required photon noise level consistent with the observation and determined the dominant noise source in KSTAR TS system.
The spectrum of relativistic electron bunches with large energy dispersion is hardly obtainable with conventional magnetic spectrometers. We present a novel spectroscopic concept, based on the analysis of the photons generated by Thomson Scattering of a probe laser pulse inpinging with arbitrary incidence angle onto the electron bunch. The feasibility of a single-pulse spectrometer, using an energy-calibrated CCD device as detector, is investigated. Numerical simulations performed in conditions typical of a real experiment show the effectiveness and accuracy of the new method.
Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is partic- ularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may even lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.
We discuss classical and quantum corrections to Thomson scattering between an electron and a laser. For radiation reaction, nonlinear, and quantum effects we identify characteristic dimensionless parameters in terms of which we determine the leading order correction terms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا