Do you want to publish a course? Click here

The global mass functions of 35 Galactic globular clusters: I. Observational data and correlations with cluster parameters

380   0   0.0 ( 0 )
 Added by Holger Baumgardt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have derived the global mass functions of a sample of 35 Galactic globular clusters by comparing deep Hubble Space Telescope photometry with suitable multimass dynamical models. For a subset of 29 clusters with available radial velocity information we were also able to determine dynamical parameters, mass-to-light ratios and the mass fraction of dark remnants. The derived global mass functions are well described by single power-laws in the mass range $0.2 < m/M_odot < 0.8$ with mass function slopes $alpha>-1$. Less evolved clusters show deviations from a single-power law, indicating that the original shape of their mass distribution was not a power-law. We find a tight anticorrelation between the present-day mass function slopes and the half-mass relaxation times, which can be understood if clusters started from the same universal IMF and internal dynamical evolution is the main driver in shaping the present-day mass functions. Alternatively, IMF differences correlated with the present-day half-mass relaxation time are needed to explain the observed correlation. The large range of mass function slopes seen for our clusters implies that most globular clusters are dynamically highly evolved, a fact that seems difficult to reconcile with standard estimates for the dynamical evolution of clusters. The mass function slopes also correlate with the dark remnant fractions indicating a preferential retention of massive remnants in clusters subject to high mass-loss rates.



rate research

Read More

In this paper we compare the mass function slopes of Galactic globular clusters recently determined by Sollima & Baumgardt (2017) with a set of dedicated N-body simulations of star clusters containing between 65,000 to 200,000 stars. We study clusters starting with a range of initial mass functions (IMFs), black hole retention fractions and orbital parameters in the parent galaxy. We find that the present-day mass functions of globular clusters agree well with those expected for star clusters starting with Kroupa or Chabrier IMFs, and are incompatible with clusters starting with single power-law mass functions for the low-mass stars. The amount of mass segregation seen in the globular clusters studied by Sollima & Baumgardt (2017) can be fully explained by two-body relaxation driven mass segregation from initially unsegregated star clusters. Based on the present-day global mass functions, we expect that a typical globular cluster in our sample has lost about 75% of its mass since formation, while the most evolved clusters have already lost more than 90% of their initial mass and should dissolve within the next 1 to 2 Gyr. Most clusters studied by Sollima & Baumgardt also show a large difference between their central and global MF slopes, implying that the majority of Galactic globular clusters is either near or already past core collapse. The strong mass segregation seen in most clusters also implies that only a small fraction of all black holes formed in globular clusters still reside in them.
We present GALEX data for 44 Galactic globular clusters obtained during 3 GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic globular clusters ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV color-magnitude diagrams of old Galactic globular clusters. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post core-He burning stars. The main features of UV color-magnitude diagrams of Galactic globular clusters are briefly discussed. We establish the locus of post-core He burning stars in the UV color-magnitude diagram and present a catalog of candidate AGB-manqu e, post early-AGB, and post-AGB stars within our cluster sample.
120 - P. Miocchi 2013
We used a proper combination of high-resolution HST observations and wide-field ground based data to derive the radial star density profile of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This is the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that: (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13 and M62 is not confirmed; (2) the majority of clusters in our sample are fitted equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distances; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~ 0.3 for about 80% of the clusters, and a secondary peak at ~ 0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with what expected from simulations of cluster dynamical evolution and the ratio between these two radii well correlates with an empirical dynamical age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.
By adopting the empirical constraints related to the estimates of Helium enhancement ($Delta Y$), present mass ratio between first and second stellar generations ($M_{1G}/M_{2G}$) and the actual mass of Galactic globular clusters ($M_{GC}$), we envisage a possible scenario for the formation of these stellar systems. Our approach allows for the possible loss of stars through evaporation or tidal interactions and different star formation efficiencies. In our approach the star formation efficiency of the first generation ($epsilon_{1G}$) is the central factor that links the stellar generations as it not only defines both the mass in stars of the first generation and the remaining mass available for further star formation, but it also fixes the amount of matter required to contaminate the second stellar generation. In this way, $epsilon_{1G}$ is fully defined by the He enhancement between successive generations in a GC. We also show that globular clusters fit well within a $Delta Y$ {it vs} $M_{1G}/M_{2G}$ diagram which indicates three different evolutionary paths. The central one is for clusters that have not loss stars, through tidal interactions, from either of their stellar generations, and thus their present $M_{GC}$ value is identical to the amount of low mass stars ($M_* le$ 1 M$_odot$) that resulted from both stellar generations. Other possible evolutions imply either the loss of first generation stars or the combination of a low star formation efficiency in the second stellar generation and/or a loss of stars from the second generation. From these considerations we derive a lower limit to the mass ($M_{tot}$) of the individual primordial clouds that gave origin to globular clusters.
We present the results of the analysis of deep photometric data of 32 Galactic globular clusters. We analysed 69 parallel field images observed with the Wide Field Channel of the Advanced Camera for Surveys of the Hubble Space Telescope which complemented the already available photometry from the globular cluster treasury project covering the central regions of these clusters. This unprecedented data set has been used to calculate the relative fraction of stars at different masses (i.e. the present-day mass function) in these clusters by comparing the observed distribution of stars along the cluster main sequence and across the analysed field of view with the prediction of multimass dynamical models. For a subsample of 31 clusters, we were able to obtain also the half-mass radii, mass-to-light ratios and the mass fraction of dark remnants using available radial velocity information. We found that the majority of globular clusters have single power law mass functions $F(m) propto m^alpha$ with slopes $alpha>-1$ in the mass range $0.2<m/text{M}_{odot}<0.8$. By exploring the correlations between the structural/dynamical and orbital parameters, we confirm the tight anticorrelation between the mass function slopes and the half-mass relaxation times already reported in previous works, and possible second-order dependence on the cluster metallicity. This might indicate the relative importance of both initial conditions and evolutionary effects on the present-day shape of the mass function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا