Do you want to publish a course? Click here

Star count density profiles and structural parameters of 26 Galactic globular clusters

110   0   0.0 ( 0 )
 Added by Paolo Miocchi
 Publication date 2013
  fields Physics
and research's language is English
 Authors P. Miocchi




Ask ChatGPT about the research

We used a proper combination of high-resolution HST observations and wide-field ground based data to derive the radial star density profile of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This is the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that: (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13 and M62 is not confirmed; (2) the majority of clusters in our sample are fitted equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distances; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~ 0.3 for about 80% of the clusters, and a secondary peak at ~ 0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with what expected from simulations of cluster dynamical evolution and the ratio between these two radii well correlates with an empirical dynamical age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.



rate research

Read More

We collected radial velocities of more than 50.000 individual stars in 156 Galactic globular clusters (GGC) and matched them with HST photometry and Gaia DR2 proper motions. This allowed us to derive the GGCs mean proper motions and space velocities. By fitting a large set of N-body simulations to their velocity dispersion and surface density profiles, combined with new measurements of their internal radially dependent mass functions, we have determined their present-day masses and structural parameters, and for 144 GGCs their internal kinematics. We also derive the initial cluster masses by calculating the cluster orbits backwards in time applying suitable recipes to account for mass-loss and dynamical friction. The new fundamental parameters of GGCs are publicly available via an online database, which will regularly be updated.
98 - H. Baumgardt , M. Hilker 2018
We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ~20,000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.
Using deep photometric data from WFC@INT and [email protected] we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess the impact of internal and external dynamical processes on the spatial distribution of stars. Adopting power-law fitting templates, with index $-gamma$ in the outer region, we find that the clusters in our sample can be divided in two groups: a group of massive clusters ($ ge 10^5 $ M_sun) that has relatively flat profiles with $2.5 < gamma < 4$ and a group of low-mass clusters ($ le 10^5 $ M_sun), with steep profiles ($gamma > 4$) and clear signatures of interaction with the Galactic tidal field. We refer to these two groups as tidally unaffected and tidally affected, respectively. Our results also show a clear trend between the slope of the outer parts and the half-mass density of these systems, which suggests that the outer density profiles may retain key information on the dominant processes driving the dynamical evolution of Globular Clusters.
204 - Jun Ma 2015
In this paper, we present the properties of 10 halo globular clusters with luminosities $Lsimeq 5-7times 10^5{L_odot}$ in the Local Group galaxy M33 using the images of {it Hubble Space Telescope} Wide Field Planetary Camera 2 in the F555W and F814W bands. We obtained ellipticities, position angles and surface brightness profiles for them. In general, the ellipticities of M33 sample clusters are similar to those of M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios ($M/L$ values) from population-synthesis models. The structural parameters include core radii, concentration, half-light radii {bf and} central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density {bf and} predicted line-of-sight velocity dispersion at the cluster center. The velocity dispersions of four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo globular clusters are well fitted by King model as well as by Wilson model, and better than by Sersic model. In general, the properties of clusters in M33, M31 and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a fundamental plane for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.
111 - Song Wang 2013
In this paper, we present surface brightness profiles for 79 globular clusters in M31, using images observed with {it Hubble Space Telescope}, some of which are from new observations. The structural and dynamical parameters are derived from fitting the profiles to several different models for the first time. The results show that in the majority of cases, King models fit the M31 clusters as well as Wilson models, and better than S{e}rsic models. However, there are 11 clusters best fitted by S{e}rsic models with the S{e}rsic index $n>2$, meaning that they have cuspy central density profiles. These clusters may be the well-known core-collapsed candidates. There is a bimodality in the size distribution of M31 clusters at large radii, which is different from their Galactic counterparts. In general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a fundamental plane for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا