No Arabic abstract
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks.
Many real-world data comes in the form of graphs, such as social networks and protein structure. To fully utilize the information contained in graph data, a new family of machine learning (ML) models, namely graph neural networks (GNNs), has been introduced. Previous studies have shown that machine learning models are vulnerable to privacy attacks. However, most of the current efforts concentrate on ML models trained on data from the Euclidean space, like images and texts. On the other hand, privacy risks stemming from GNNs remain largely unstudied. In this paper, we fill the gap by performing the first comprehensive analysis of node-level membership inference attacks against GNNs. We systematically define the threat models and propose three node-level membership inference attacks based on an adversarys background knowledge. Our evaluation on three GNN structures and four benchmark datasets shows that GNNs are vulnerable to node-level membership inference even when the adversary has minimal background knowledge. Besides, we show that graph density and feature similarity have a major impact on the attacks success. We further investigate two defense mechanisms and the empirical results indicate that these defenses can reduce the attack performance but with moderate utility loss.
Machine learning (ML) based approaches have been the mainstream solution for anti-phishing detection. When they are deployed on the client-side, ML-based classifiers are vulnerable to evasion attacks. However, such potential threats have received relatively little attention because existing attacks destruct the functionalities or appearance of webpages and are conducted in the white-box scenario, making it less practical. Consequently, it becomes imperative to understand whether it is possible to launch evasion attacks with limited knowledge of the classifier, while preserving the functionalities and appearance. In this work, we show that even in the grey-, and black-box scenarios, evasion attacks are not only effective on practical ML-based classifiers, but can also be efficiently launched without destructing the functionalities and appearance. For this purpose, we propose three mutation-based attacks, differing in the knowledge of the target classifier, addressing a key technical challenge: automatically crafting an adversarial sample from a known phishing website in a way that can mislead classifiers. To launch attacks in the white- and grey-box scenarios, we also propose a sample-based collision attack to gain the knowledge of the target classifier. We demonstrate the effectiveness and efficiency of our evasion attacks on the state-of-the-art, Googles phishing page filter, achieved 100% attack success rate in less than one second per website. Moreover, the transferability attack on BitDefenders industrial phishing page classifier, TrafficLight, achieved up to 81.25% attack success rate. We further propose a similarity-based method to mitigate such evasion attacks, Pelican. We demonstrate that Pelican can effectively detect evasion attacks. Our findings contribute to design more robust phishing website classifiers in practice.
Machine learning (ML) has progressed rapidly during the past decade and ML models have been deployed in various real-world applications. Meanwhile, machine learning models have been shown to be vulnerable to various security and privacy attacks. One attack that has attracted a great deal of attention recently is the backdoor attack. Specifically, the adversary poisons the target model training set, to mislead any input with an added secret trigger to a target class, while keeping the accuracy for original inputs unchanged. Previous backdoor attacks mainly focus on computer vision tasks. In this paper, we present the first systematic investigation of the backdoor attack against models designed for natural language processing (NLP) tasks. Specifically, we propose three methods to construct triggers in the NLP setting, including Char-level, Word-level, and Sentence-level triggers. Our Attacks achieve an almost perfect success rate without jeopardizing the original model utility. For instance, using the word-level triggers, our backdoor attack achieves 100% backdoor accuracy with only a drop of 0.18%, 1.26%, and 0.19% in the models utility, for the IMDB, Amazon, and Stanford Sentiment Treebank datasets, respectively.
Recently, recommender systems have achieved promising performances and become one of the most widely used web applications. However, recommender systems are often trained on highly sensitive user data, thus potential data leakage from recommender systems may lead to severe privacy problems. In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference. In contrast with traditional membership inference against machine learning classifiers, our attack faces two main differences. First, our attack is on the user-level but not on the data sample-level. Second, the adversary can only observe the ordered recommended items from a recommender system instead of prediction results in the form of posterior probabilities. To address the above challenges, we propose a novel method by representing users from relevant items. Moreover, a shadow recommender is established to derive the labeled training data for training the attack model. Extensive experimental results show that our attack framework achieves a strong performance. In addition, we design a defense mechanism to effectively mitigate the membership inference threat of recommender systems.