Do you want to publish a course? Click here

Testing density-functional approximations on a lattice and the limits of the related Hohenberg-Kohn-type theorem

303   0   0.0 ( 0 )
 Added by Vivian Franca V.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a metric-space approach to quantify the performance of density-functional approximations for interacting many-body systems and to explore the validity of the Hohenberg-Kohn-type theorem on fermionic lattices. This theorem demonstrates the existence of one-to-one mappings between particle densities, wave functions and external potentials. We then focus on these quantities, and quantify how far apart in metric space the approximated and exact ones are. We apply our method to the one-dimensional Hubbard model for different types of external potentials, and assess its validity on one of the most used approximations in density-functional theory, the local density approximation (LDA). We find that the potential distance may have a very different behaviour from the density and wave function distances, in some cases even providing the wrong assessments of the LDA performance trends. We attribute this to the systems reaching behaviours which are borderline for the applicability of the one-to-one correspondence between density and external potential. On the contrary the wave function and density distances behave similarly and are always sensitive to system variations. Our metric-based method correctly predicts the regimes where the LDA performs fairly well and the regimes where it fails. This suggests that our method could be a practical tool for testing the efficiency of density-functional approximations.

rate research

Read More

105 - Aihui Zhou 2017
The Hohenberg-Kohn theorem plays a fundamental role in density functional theory, which has become a basic tool for the study of electronic structure of matter. In this article, we study the Hohenberg-Kohn theorem for a class of external potentials based on a unique continuation principle.
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using density-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn-Sham approach to DFT. Yet other choices are possible and allow to connect DMET with other DFTs such as kinetic-energy DFT or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a DFT perspective and show how both approaches can be used to supplement each other. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections in DMET and how to construct approximations for different DFTs using DMET inspired projections. Such alternative approximation strategies become especially important for DFTs that are based on non-linearly coupled observables such as kinetic-energy DFT, where the Kohn-Sham fields are no longer simply obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn-Sham construction is not feasible.
194 - Codina Cotar , Gero Friesecke , 2017
We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained-search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N=2 [CFK11]. The correct limit problem has been derived in the physics literature by Seidl [Se99] and Seidl, Gori-Giorgi and Savin [SGS07]; in these papers the lack of a rigorous proof was pointed out. We also give a mathematical counterexample to this type of result, by replacing the constraint of given one-body density -- an infinite-dimensional quadratic expression in the wavefunction -- by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.
97 - Tobias J. Osborne 2019
We describe a general procedure to give effective continuous descriptions of quantum lattice systems in terms of quantum fields. There are two key novelties of our method: firstly, it is framed in the hamiltonian setting and applies equally to distinguishable quantum spins, bosons, and fermions and, secondly, it works for arbitrary variational tensor network states and can easily produce computable non-gaussian quantum field states. Our construction extends the mean-field fluctuation formalism of Hepp and Lieb (developed later by Verbeure and coworkers) to identify emergent continuous large-scale degrees of freedom - the continuous degrees of freedom are not identified beforehand. We apply the construction to to tensor network states, including, matrix product states and projected entangled-pair states, where we recover their recently introduced continuous counterparts, and also for tree tensor networks and the multi-scale entanglement renormalisation ansatz. Finally, extending the continuum limit to include dynamics we obtain a strict light cone for the propagation of information.
The reliability of density-functional calculations hinges on accurately approximating the unknown exchange-correlation (xc) potential. Common (semi-)local xc approximations lack the jump experienced by the exact xc potential as the number of electrons infinitesimally surpasses an integer, and the spatial steps that form in the potential as a result of the change in the decay rate of the density. These features are important for an accurate prediction of the fundamental gap and the distribution of charge in complex systems. Although well-known concepts, the exact relationship between them remained unclear. In this Letter, we establish the common fundamental origin of these two features of the exact xc potential via an analytical derivation. We support our result with an exact numerical solution of the many-electron Schroedinger equation for a single atom and a diatomic molecule in one dimension. Furthermore, we propose a way to extract the fundamental gap from the step structures in the potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا